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Abstract 
The APOS instructional treatment of mathematics, introduced in the USA during the1990’s by Ed Dubinsky and his 

collaborators, states that the teaching of mathematics should be based on helping students to develop the proper 

mental structures for learning mathematics. The ACE teaching style is the pedagogical approach of the APOS theory 

with the help of computers. Here a Markov Chain model is developed on the components of the ACE cycle on the 

purpose of studying mathematically its flow-diagram. This leads to a measure evaluating the student difficulties in 

learning mathematics. Examples are also presented on teaching the graphical representation of the derivative 

illustrating the applicability and usefulness of our model. 
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1. Introduction 
The APOS/ACE instructional treatment of mathematics has been developed in the USA during the 1990’s by a 

team of mathematicians and mathematics educators led by Ed Dubinsky (Arnon et al., 2014; Asiala et al., 1996; 

Dubinsky and McDonald, 2001). In earlier works we have applied the APOS/ACE approach for teaching the 

irrational numbers (Voskoglou, 2013) and the polar coordinates on the plane (Borji and Voskoglou, 2016;2017). and 

also for assessing, with the help of fuzzy logic, its effectiveness in improving the student learning skills (Voskoglou, 

2015). 

In the present work we develop a Markov Chain (MC) model on the components of the ACE teaching cycle of 

mathematics on the purpose of studying mathematically its flow-diagram. This leads to a measure for evaluating the 

student difficulties in learning mathematics. The rest of the paper is formulated as follows: In Section 2 a brief 

account of the main ideas of the APOS/ACE theory is presented. Our MC model is developed in Section 3, while in 

Section 4 examples are provided on teaching the derivative illustrating the model’s applicability and usefulness in 

practice. The article closes with the conclusions and some hints for future research on the subject, which are 

contained in Section 5.  

  

2. The APOS/ACE Instructional Treatment of Mathematics  
     Ed Dubinsky (Figure 1) had already spent twenty five years performing research on functional analysis and 

teaching undergraduate mathematics before starting his new career on figuring out pedagogical strategies that help 

students to be more successful in learning mathematics. APOS is a theory based on Piaget’s principle that an 

individual learns by applying certain mental mechanisms to build specific mental structures and utilizes those 

structures to deal with problems connected to the corresponding situations (Piaget, 1970). As a matter of fact, the 

APOS theory argues that the teaching and learning of mathematics should be based on helping students to use the 

mental structures that they already have and to develop new, more powerful structures, for handling more and more 

advanced mathematics. Those structures include Actions, Processes, Objects and Schemas, the acronym APOS being 

formed by the initial letters of the above four words.  

Two are the mental mechanisms involved in the APOS approach, called interiorization and encapsulation 

respectively. A mathematical concept is first formed as an action. As one repeats and reflects on an action, this 

action may be interiorized to a process enabling the individual to perform the same activities in his/her mind. When 

the individual becomes aware of a process as a totality and becomes able to construct transformations on this totality, 

then the process has been encapsulated to an object. This is often neither easy nor immediate, because encapsulation 

entails a radical sift in the nature of one’s conceptualization, since it signifies the ability to think of the same concept 

as a mathematical entity to which new, higher-level transformations can be applied.  On the other hand, the mental 

process that led to a mental object through encapsulation remains still available and many mathematical situations 

require one to de-encapsulate an object back to the process that led to it. Finally, the actions, processes and objects 

involved in a mathematical topic need to be organized in an individual’s coherent cognitive schema. 
 

 

 



Sumerianz Journal of Education, Linguistics and Literature 
 

 

5 

Figure-1.  Ed Dubinsky (1935-…)
1
 

 

 

 

 

 

 

 

 

        

 

 

For example, if one can think of a function only through an explicit expression connecting the two variables 

involved, then he/she is having an action understanding of functions. On the contrary, a process understanding of a 

function enables the individual to think about it in terms of inputs and outputs, possibly unspecified. Further, an 

object understanding allows one to form sets of functions, to define operations on such sets, to equip them with a 

topology, etc. Going back from a composite function to its component functions for the better understanding of the 

rule of derivation of a composite function and going back from the derivative to the initial function in order to 

understand the process of the integration of a function,  constitute classical examples of de-encapsulating an object 

back to the process that led to it Finally, it is the schema structure that enables one to see and use a function in a 

given mathematical or real world situation. Figure 2, taken from Dubinsky’s personal web page 
2
, represents 

graphically the APOS approach.  

      
Figure-2.  Graphical representation of the APOS approach 

 
 

The implementation of the APOS as a framework for teaching and learning mathematics involves three stages. 

First a theoretical analysis, called Genetic Decomposition (GD) of the concepts under study, is performed. The GD 

comprises a description that includes actions, processes and objects and the order in which it may be best for learners 

to experience them. The main contribution obtained from an APOS GD is an increased understanding of an 

important aspect of human thought. However, explanations offered by such analyses are limited to descriptions of 

the thinking that an individual may be capable of and not of what really happens in an individual’s mind, since this is 

probably unknowable. Moreover, the fact that one possesses a certain mental structure does not mean that he/she will 

necessary apply it in a given situation. This depends on other factors regarding managerial strategies, prompts, 

emotional state, etc. In the next stage instructional sequences based on the GD are developed and implemented and 

finally data are collected and analysed in order to test and refine the GD (Dubinsky and McDonald, 2001). 

     The APOS theory has important consequences for education. Simply put, it says that the teaching of mathematics 

should aim in helping students use the mental structures they already have to develop an understanding of as much 

mathematics as those available structures can handle. For students to move further, teaching should help them to 

build new, more powerful structures for handling more and more advanced mathematics. Dubinsky and his 

collaborators realized that for each mental construction that comes out of an APOS analysis, one can find a computer 

task of writing a program or code, such that, if a student engages in that task, he (she) is fairly likely to build the 

                                                           
1 - 1962: Ph.D.  In Mathematics (Functional Analysis), University of Michigan, USA 

  - 1956-1959: Programmer – Computer Analyst 

  - 1960-1984: Instructor / Lecturer / Visiting Professor in ten Universities of America, Africa and Europe.  

  - 1985-2000: Professor with research in Mathematics Education in Berkley, Purdue, New Hampshire and Georgia State 

Universities,   

     USA.  

  -  2000 -…: Visiting Professor in Kent State University, USA.  

 
2  http://www.math.kent.edu/~edd  

http://www.math.kent.edu/~edd
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mental construction that leads to learning the corresponding mathematical topic. Based on the above aspect, the 

pedagogical approach based on APOS analysis, known as the ACE teaching cycle, is a repeated cycle of three 

components: (A) activities on the computer, (C) Classroom discussion and (E) Exercises done outside the class 

(Figure 3) 

 
Figure-3. The ACE teaching cycle 

 
 

In applying the ACE cycle the mathematical topic to be learnt is divided to smaller subtopics and each one of 

the iterations of the cycle corresponds to one of those subtopics. The computer activities, which form the first step of 

the ACE approach, are designed to foster the students’ development of the appropriate mental structures. The 

students do all of their work in cooperative groups. In classroom the teacher guides the students to reflect on the 

computer activities and their relation to the mathematical concepts being studied. They do this by performing 

mathematical skills without using the computer.  They discuss their results and listen to explanations by fellow 

students or the teacher of the mathematical meanings of what they are working on. The homework exercises are 

fairly standard problems related to the topic being studied. Students reinforce the knowledge obtained in the 

computer activities and classroom discussions by applying it in solving these problems. The implementation of the 

ACE cycle and its effectiveness in helping students make mental constructions and learn mathematics has been 

reported in several research studies of the Dubinsky’s team  (Arnon  et al., 2014; Asiala  et al., 1996; Weller et al., 

2009;2011). 

 

3. The Markov Chain Model 
     The basic ideas about MCs were introduced by A. Markov in 1907 on the purpose of coding literary texts. Since 

then the MC theory, which offers ideal conditions for the study and mathematical modelling of a certain kind of 

situations depending on random variables, was developed by a number of leading mathematicians, such as A. 

Kolmogorov, W. Feller etc. However, only from the 1960’s its importance to the Natural, Social and most of the 

other Applied Sciences has been recognized (Bartholomew, 1973; Kemeny and Snell, 1963; Suppes and Atkinson, 

1960; Voskoglou, 2017a).  

    Roughly speaking, a MC is a stochastic process that moves in a sequence of steps (phases) through a set of states 

and has a “one-step memory”. This means that the probability of entering a certain state in a certain step, known as 

the transition probability between steps, depends on the state occupied in the previous step and not in older steps. 

This is known as the Markov property. However, for being able to model as many real life situations as possible by 

using MCs, one could accept in practice that the transition probability, although it may not be completely 

independent of previous steps, it mainly depends on the state occupied in the previous step (Kemeny and Snell, 

1963). When the set of states of a MC is a finite set, then we speak about a finite MC. For general facts on finite MCs 

we refer to the book of Kemeny and Snell (1976). 

Here, in order to study mathematically the flow-diagram of the ACE cycle, we introduce a finite MC with states 

the components S1 = computer activities, S2 = classroom discussion and S3 = homework exercises, of the ACE cycle. 

Denote by pij the transition probability from state Si to state Sj, i, j = 1, 2, 3. Then the matrix A= [pij] is called the 

transition matrix of the MC. Taking into account the flow-diagram of the ACE cycle presented in Figure 3 it is 

straightforward to check that 

 

                                (1) 

    Since the transition from a state to some other state  is the certain event, we have that  

                                  (2). 

     A state of a MC is called absorbing if, once entered, it cannot be left. Further a MC is said to be an absorbing 

MC (AMC) if it has at least one absorbing state and if from every state it is possible to reach an absorbing state, not 

necessarily in one step. Obviously, the present MC is an AMC, with S1 being its starting state and S3 being its unique 

absorbing state. Applying the standard theory of the AMCs (Kemeny and Snell, 1976). We bring the transition 
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matrix A to its canonical (or standard) form A
* 

by listing the absorbing state
 
first

 
and then we make a partition of  A

* 

as follows: 

                      (3) 

      

     In the above partition I1 is the 1 X 1 unitary matrix, O is a 1 X 2 zero matrix, R is the 2 X 1 transition matrix 

from the non-absorbing states to the absorbing state and Q is the 2 X 2 transition matrix between the two non 

absorbing states of the AMC. Then, if I2 denotes the 2 X 2 unitary matrix, we have 

                                                           (4) 

    Since the determinant of I2 – Q is non zero, I2 – Q is an invertible matrix 
3
. Then, the fundamental matrix N of 

the AMC is defined to be the inverse matrix of I2 – Q. Therefore  

                    (5) 

     The matrix adj (I2 – Q) in equation (5) is the adjoin matrix of I2 – Q and D (I2 – Q) is the determinant of  

I2  - Q. It is recalled that the adjoin matrix of I2 – Q is the matrix of the algebraic complements of the transpose 

matrix of I2 – Q, which is obtained by turning the rows of I2 – Q to columns and vice versa (Morris, 1978) Replacing 

the matrix I2 – Q from (4) to (5) and making the corresponding calculations one finds that 

                                                             (6) 

     It is well known (Kemeny and Snell, 1976). that the element nij of the fundamental matrix N gives the mean 

number of times in state S before the absorption, when the starting state of the AMC is S  , where Si and Sj are non 

absorbing states. In our case, since S1 is the starting state of the MC, it becomes evident that the mean number of 

steps of the MC before the absorption is given by the sum  

                                                               (7) 

     It is logical to accept that the greater is the value of t, the more the student difficulties during the ACE cycle. 

Of course the total time spent during the ACE cycle is another factor, apart for t, indicating the student difficulties. 

However, the total duration of the steps S1 and S2 of the ACE cycle is usually prefixed by the instructor, which 

means that in this case t could be considered as a measure of the student difficulties during the computer activities 

and the classroom discussion.  

 

4. A Classroom Application 
     The following classroom application took place some time ago at the Graduate Technological Educational 

Institute of Western Greece in the city of Patras with subjects the 30 students of the first term of an engineering 

department of the School of Technological Applications. In order to help students to have a better understanding of 

the graphical representation of the derivative, we designed (Voskoglou, 2017b), in collaboration with Vahid Borji 

who performed a similar classroom application in an Iranian University (Borji et al., 2018), an APOS GD by giving 

emphasis to the following points:  

1. Connecting two points (a, f(a)) and (b, f(b)) on a given curve y = f(x) to construct the corresponding chord 

of the curve. 

2. Calculating the slope of a secant line at a point (a, f(a)) as the other point (b, f(b)) is moving 

approaching it. 

3. Defining the tangent line at a point (a, f(a)) of the graph of a function y = f(x) and calculating its slope by 

the limit:  , which is by definition the derivative f’(a). 

4. Calculating οn the basis of the above process the derivative f΄’(a) at a point (α, f(α)) from a given table of 

suitable values of the function  y = f(x) without using limits. 

                                                           
3  It can be shown, e.g. see Voskoglou & Perdikaris, 1991, that this matrix is always invertible whatever is the number of states of 

the corresponding AMC. 
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5. Presenting examples of constructing the graph of the derivative function f΄(x) when the graph but not the 

analytic formula of y = f(x) is given. 

Next, an ACE approach was developed on the basis of the above GD. Three computer activities were designed 

with the help of the proper software corresponding to three iterations of the ACE cycle. 

 The first activity, connected to the points 1-3 of the above GD, focused on a limit process, where a point B 

(b, f(b)) moving on the graph of y = f(x) approaches the fixed point A (a, f(a)), which means that the 

corresponding secant line approaches the tangent line of the graph at the point A. 

  In the second activity, connected to the point 4 of the GD, a ready procedure was presented to students 

designed with the Maple software that constructs the graph of y = f(x) and its tangent line at a, computes the 

slope of the tangent and plots the point (a, f¨(α)) in the same coordinate system.  

 The third activity, connected to the point 5 of the GD, expanded the second one to a procedure that plots 

any points of the form (x, f¨(x)) when the graph of f(x) is given and designs the graph of the derivative 

function f ΄(x) in the same coordinate system 

     The following three exercises were given to students for solution without the help of computers after the end of 

each computer activity: 

     Exercise 1 (connected to the first activity): Using the graph of the function y = f(x) and the Table of its values 

given in Figure 4 approximate the value of the derivative f ΄(x) at x = 0.04. 

 
Figure-4. The data of Exercise 1 

 
 

Exercise 2 (Connected to the second computer activity): The line L is the tangent to the graph of the function y= 

f(x) of Figure 5 at the point (4, 4). Calculate the value of f ΄(4). 

 
Figure-5. The graph of Exercise 2 

 
 

Exercise 3 (Connected to the third computer activity): Taking into account that the tangent at the point (a, f(a)) 

of the graph of the function y = f(x) of Figure.6 is horizontal and that the tangent at (b, f(b)) is vertical with respect to 

the x-axis, sketch the graph of the derivative function  f΄(x). 
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Figure-6. The graph of Exercise 3 

 
     

Solution: Since the tangent of the given graph at (a, f(a)) is parallel to the x-axis, its slope is equal to zero, which 

means that f ΄(α) = 0. Consequently, the graph of f ΄(x) intersects the x-axis at a. 

Also, from Figure 6 one observes that f(x) is strictly decreasing in the interval (- , a), which means that f 

΄(x)<0, for all x in (- , a). Therefore, the graph of f ΄(x) in (- , a) lies under the x-axis. Further, the concavity of 

f(x) in (- , a), is upwards, which means that f΄΄΄(x)>0. Consequently, the derivative function f΄(x) is strictly 

increasing in (- , a).  

In the interval (a, b), f(x) is strictly increasing, therefore f΄(x)>0. Thus the graph of f΄(x) lies over the x-axis. Also 

the concavity of f(x) is upwards, which means that f΄(x) is strictly increasing. 

Since the tangent of the graph of f(x) at b is vertical, its slope is equal to + , therefore there is no real value for 

the derivative of f(x) at b, i.e. b does not belong to the domain of f΄(x). 

Similarly, in the interval (b, c) we have that f ΄(x)>0 and f΄΄(x)<0, i.e. f ΄(x) is decreasing and its graph lies over 

the x-axis. 

At the point (c, f(c)) the left and right tangents to the graph of f(x) are different, which means that 

 f ΄(x) is not defined at c. Finally, in the interval (c, + ) f(x) is strictly decreasing and its graph turns to a 

straight line. Therefore the value of the derivative f ΄(x) is equal to a negative real constant at all points of this 

interval, which means that its graph is a straight line parallel to the x-axis and lying under it. 

All the above lead to the draft design of the graph of f ΄(x) presented in Figure 7 

 

 
 

Inspecting the student answers in Exercise 1, I realized that 18 out of 30 solved it correctly. This means that the 

target of the first iteration of the ACE cycle was succeeded by those students. Nevertheless, it became evident that 

for the rest of the students the classroom discussion following the first computer activity was necessary, in order to 

reflect better on this activity and its relation to the mathematical topic being studied. In other words and in terms of 

the MC model of Section 2 one could consider that   

At the end of the classroom discussion an analogous exercise was given for solution to the 12 students that had 

failed to solve Exercise 1 in first place.  In this case 8 correct solutions were found, which means that

. Replacing the values of the tradition probabilities in equation (7) one finds that 

 

Working similarly with Exercise 2 connected the second iteration of the ACE cycle I found that , 
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. In this case equation (7) gives that . 

Finally, for Exercise 3 connected to the third iteration of the ACE cycle I found that and  

. In this case equation (7) gives that . 

In concluding, the student difficulties were grater during the third iteration and lower during the third iteration 

of the ACE cycle. This seems to be logical due to the increasing difficulty of the topics tackled in each of the tree 

iterations of the ACE teaching approach. 

 

5.  Discussion and Conclusion 
The MC model developed in the present work for studying the ACE teaching style, i.e. the pedagogical outcome 

of the APOS instructional treatment of mathematics, led to a numerical measure of the student difficulties during the 

several iterations of the ACE cycle for learning a certain mathematical topic. This is very useful for the mathematics 

instructor, because it helps the effort of the improvement of the corresponding APOS GD and of the instructor’s 

teaching plans in general for enhancing the student performance. The classroom application performed on teaching 

the graphical representation of the derivative illustrated the applicability and usefulness of our model in practice. 

More applications of the MC model to other mathematical topics are included in our plans for future research, as 

well as the combination of MCs with other proper mathematical tools, like fuzzy logic, grey system theory etc,, for a 

further improvement of the effectiveness of our model in representing and formulating mathematically the 

APOS/ACE instructional treatment of mathematics.  
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