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Abstract 
This study investigates the effects of climate variables and previous cases of dengue on current cases of dengue. The 

meteorological variables, average, maximum and minimum temperature, relative humidity, total precipitation, and 

previous cases are identified with a time interval as input parameters for artificial neural network (ANN) RNA. 

Specific parameters and time intervals are defined by a correlation analysis between each variable with the current 

dengue cases. In short, the ANN is developed as a result of this research in order to predict dengue outbreaks in the 

municipality of Campo Grande, with   a promisng accuracy rate. 

Keywords: Dengue; Time series; Neural networks. 
 

 

1. Introduction 
Dengue is a public health problem and considered as one of the most important arbovirus that affects humans. It 

is caused by the vector Aedes Aegyp, whose proliferation is related to climate variables, with the summer being the 

period of the greatest transmission. The endemic regions for this disease are the tropical and subtropical countries, 

where environmental conditions favor the life cycle of the vector. 

Climatic variations affect the health-disease process directly, causing positive and negative impacts on the 

population's quality of life and health. The theme health and environment should be the object of study, aiming to 

understand the importance of understanding that the behavior of environmental factors directly interferes in this 

process, considering that health encompasses the environment as one of its determinants. 

In this interface between health and environment, climate variables such as temperature, relative air humidity 

and rainfall should be studied and associated with the health issues, including dengue. As a reemerging infectious 

disease, it has been increasing its incidence of reported cases, indicating a concern for managers in public health. 

Modeling dengue in endemic areas is important for mitigating and improving control of vector-borne diseases to 

reduce outbreaks. 

Disease occurrence models can be based on linear and nonlinear approaches that simulate complex relationships 

between short- and long-term environmental variables (climate) and dengue incidence [1-3]. Linear models are often 

unable to simulate complex interactions between these factors, and the powers tend to be smaller [4]. Nonlinear 

approaches generally demonstrate greater power than linear models [5]. For example, Husin, et al. [6] predicted 

dengue in Malaysia using a nonlinear model to help the government fight the disease. A similar study in Singapore 

used genetic algorithms and support vector machines to predict the number of dengue cases [7]. Studies in Thailand, 

Singapore, and Malaysia have also used artificial neural network (RNA) models to predict dengue cases, reaching 

greater than 80% accuracy [8-10]. A similar study in Sri Lanka with RNA showed lower accuracy (ie 60%) [11]. 

RNAs considerad attractive because they usually reach a higher ability than other types of models [12]. 

Abdiel, et al. [13], applied artificial neural networks  (ANNs) to predict occurrences of dengue outbreaks in San 

Juan, Puerto Rico (USA) and various coastal municipalities in the state of Yucatan, Mexico, based on specific 

boundaries. The models were trained with 19 years of dengue data in Puerto Rico and six years in Mexico. 

Environmental and demographic data included in the predictive models were sea surface temperature (SST), 

precipitation, air temperature (ie minimum, maximum and mean), humidity, previous dengue cases and population 

size. Two models were applied for each study area. One predicted dengue incidence rates based on population at risk 

(ie number of people under 24) and the other on the size of vulnerable population (ie number of people under five 

and over 65 years). Predictive power was above 70% for all four runs of the model. ANNs were able to successfully 

model the occurrence of dengue outbreaks in both areas. The variables with the most influential in predicting dengue 

outbreak occurrences in San Juan, Puerto Rico included population size, previous dengue cases, maximum air 
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temperature, and date. In Yucatan, Mexico, the most important variables were population size, previous cases of 

dengue, minimum air temperature, and database. 

Artificial neural networks use combinations of predictor variables (eg environmental factors) to simulate 

relationships with target variables (eg occurrences of dengue outbreaks). These models can be adapted to assimilate 

data, and this helps to improve the functional relationships between climate factors and dengue outbreaks. In our 

study, we applied Multilayer Perceptron (MLP) which is a popular neural network type to predict dengue outbreaks 

in Campo Grande. We identified important environmental factors in the conduct of dengue outbreaks. The candidate 

variables were air surface temperature, humidity, precipitation, previous cases of dengue. Previous cases of dengue 

are defined as those cases that occurred days / months / months before an outbreak [12]. Artificial neural networks 

are an alternative to traditional methods for solving time series prediction problems. This technique allows multiple 

variables in the input and output layers. Thus, it is possible to use distinct climate variables in modeling dengue case 

prediction, thereby increasing the effectiveness of the predictor model. 

Prediction models using this technique have presented low error results in several types of application, including 

dengue prediction, as can be observed in Aburas, et al. [8]; Munyque and Daniel [14]. The main contribution of this 

work is developing an accurate prediction model for dengue cases using ANNs for Guarulhos municipality. The 

main goal is to model the approach to a study area with a higher incidence of the disease which hasa greater need to 

perform an accurate prediction. 

 

1.1. Artificial Neural Networks (ANNs) 
An ANN can be defined as a parallel distributed processor consisting of simple processing units (also known as 

artificial neurons), which have the ability to store experimental knowledge and make it available for prediction. 

Haykin [15]. One of the most important characteristics of ANNs is their ability to learn from previous examples. The 

learning stage consists of an iterative process of adjusting the synaptic weights, which at the end of the process store 

the knowledge that the network has acquired from the external environment [16]. 

 

1.2. Multilayer Perceptron Networks 
Multilayer Perceptron Networks (MLP) belong to the neural architecture known as multilayer feedforward, 

being characterized by the presence of at least one intermediate (hidden) layer of neurons, situated between the input 

layer and the output layer [17]. 

Signals are presented to the network at its input layer. The intermediate layers extract most of the information 

regarding their behavior and encode it through the synaptic weights and thresholds of their neurons [17]. The 

processing performed by each neuron of a given input is defined by the combination of the processing performed by 

the anterior layer that are connected to it Braga, et al. [18]. The output layer receives the stimuli from the last 

intermediate layer , producing a response pattern that will be the output that made by the network. 

The MLP network training process is usually performed with the backpropagation algorithm, which uses input 

and output pairs to adjust the network weights and thresholds through an error correction mechanism [18]. 

The use of the conventional backpropagation algorithm in practice tends to converge too slowly, thus requiring a 

high computational effort. Some of the alternatives to make the network convergence process more efficient are: the 

insertion of the momentum term; or the use of backpropagation variants such as the Levenberg-Marquardt algorithm 

and Bayesian Regularization [17]. 

Given the above, this study aimed to analyze the relationship of climate variables with dengue cases in Campo 

Grande, MS, from 2008 to 2018, using the ANNs. 

 

2. Materials and Methods 
2.1. Data Collection 

Geographically, the municipality of Campo Grande is located near the Brazilian border with Paraguay and 

Bolivia. It is located at latitude 20º26'34 ”south and longitude 54°38'47” west. Campo Grande's climate is classified 

as tropical with a dry season (Aw, according to the Köppen-Geiger climate classification), indicating the coldest 

months (June and July) with an average compensated temperature of 18.6°C. transition between the tropical 

monsoon (Am according to Köppen), the tropical dry season and the humid subtropical (Cfa according to Köppen). 

The thermal amplitude is relatively high due to the great influence of continentality, Campo Grande has quite 

variable temperatures during the year, with two very well defined seasons: hot and humid in summer and less rainy 

and mild in winter. In winter months, the temperature can drop considerably with sporadic and light frosts, 

sometimes the thermal sensation can reach below 0 ° C. 

Data were collected from a secondary source, related to the series and number of dengue cases reported in the 

Notified Disease Information System (SINAN) (CID-10 codes A90-A91). 

Monthly data on average, minimum and maximum temperature, relative humidity and precipitation were 

provided by the Mato Grosso do Sul State Water Resources Monitoring Center (CEMTEC-MS). 

Before using the data, data normalization was performed. This process aims to scale the data samples to the 

dynamic range of hidden layer activation functions to avoid neuronal saturation [17]. 

Also a random subsampling cross-validation is used, in which 70% of the total dataset was randomly chosen for 

the training subset while the remaining data (30%) were part of the test and validation phase. 
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2.2. Ethical Considerations 
The present study is based on publicly available secondary data, which do not constrain groups of populations 

and / or individuals in the presentation of the results found, ensuring the confidentiality of the information collected. 

Thus, the ethical aspects of research with human beings were respected, according to Resolution no. 466/2012 [19]. 

 

2.3. Model of Artificial Neural Networks 
ANNs is a nonlinear model that have a structure capable of representing complex nonlinear processes that relate 

the inputs and outputs of any system, covering regression problems, prediction models, and other applications in 

different areas [20-22]. 

The advantage of the ANN technique is that it does not require priori knowledge of mathematical calculations 

between parameters and provide a better solution to different problems. The ANN adopted in this work is the 

Multilayer Perceptron. MLP is a massively parallel and distributed information processing system that has been 

successfully applied for many nonlinear and complex problems. The basic structure of MLP is an input layer, hidden 

layer with linked weights, and an output layer: 
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where xi,j is the input signal of the jth neuron (for the input layer), wi,j is the weight of the direct connection of 

neuron j to neuron i (in the hidden layer) and θi is the bias of neuron i . The output of neurons is calculated by 

applying an activation function. The activation function used is typically standard sigmoid. 
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The network is powered with a set of input-output pairs and trained to reproduce the output. There are a variety 

of algorithms available for training ANN and adjusting their weights. In this study, MLP was trained using Bayesian 

Regularization Backpropagation and Levenberg – Marquardt Backpropagation training algorithms. The main task in 

developing an model is to identify the input variables and the optimal network structure to produce the desired 

output. 

The number of neurons in the input layer of each model can be observed in (Table 2). Other assays were 

performed for the number of occult layer neurons. However, the trial and error procedure showed that there was no 

significant improvement in ANN performance. In Figure 1, the typical structure of a multilayer ANN model is 

presented. 

All  ANN models were trained and validated through the MATLAB Neural Networks toolbox. 

The  data were divided into two sections, the years from 2008 to 2012 were used to train the ANN, while the 

years from 2012 to 2018 were used for validation. 

 

2.4. Statistical Validation Indexes 
The accuracy and performance of ANN model were evaluated using various statistical indices. The statistical 

indicators used can be divided into two groups: dispersion indicators (error indicators) and general performance 

indicators [23]. The dispersion indices used in this study are: [Mean Bias Error (MBE), Root Mean Square Error 

(RMSE), and Mean Absolute Percentage Error (MAPE)]. The general performance indicators used were: 

Determination Coefficient (R²) and Willmott Agreement Index (ICW) [24]. Another analysis is based on the linear 

regression coefficients (type: where we have the angular coefficient “a” and the linear coefficient “b”). All these 

indicators are used to verify the validity and applicability of the forecast values. The expressions of these indicators 

are given below: 
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Where N is the total number of observations,    ,     and    ̿̿ ̿̿ ̿̿  are the estimated, measured and average DE 

values, respectively. It should be mentioned that lower values of MBE, RMSE and MAPE show higher model 

accuracy in the estimation and the ideal cases are zero. The MBE provides a measure of the overall trend of a given 
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model, ie overestimation (positive values) or underestimation (negative values). The values of R2 and ICW range 

from 0 to 1. For better modeling, R² and ICW should approach 1 as close as possible. 

 

2.5. Proposed ANN 
The ANNs constructed in this work have six inputs, an intermediate layer with n neurons and one neuron in the 

output layer. Figure 1 illustrates the MLP network model employed for the prediction of dengue. 

 
Figure-1. MLP model for forecasting dengue cases in Campo Grande 

 
 

In addition to the networks described, ANN with 15 variations of the input set were modeled. This is done 

because, some networks did not include data for all variables or added information regarding the number of dengue 

cases from previous months. 

 

3. Results and Discussion 
The investigation of the viability of a model based on artificial neural networks for epidemiological time series 

predictions. However, important criteria that define an structure such as the number of inputs, intermediate layers, 

and training parameters are important prerequisites for good model evaluation and fit. 

The choice of architecture was a feedforward neural network because of its wide applicability in problems 

involving functional approximations such as time series. 

The greatest difficulty with ANN was to obtain the parameters that best behave with the data presented. The 

numbers of hidden neurons were between 3 and 15. The learning rates, momentum, goal, number of hidden layer 

neurons, number of cycles and the training algorithm were obtained after exhaustive tests [25, 26]. 

The results obtained by ANN proved to be adequate for the dengue incidence prediction system as shown in 

Table 3. The neural networks presented a higher predictive power to the logistic regression model, considering the 

data from the historical series of dengue in the municipality. of Campo Grande, State of Mato Grosso do Sul. 

Neural networks are very old, the first models are from the 1950s, the use is spreading nowadays because we 

have better machines to make the processing and data available, which we didn't have years ago, ANN is an area to 

be improved and developed, within the forecast in epidemiological systems due to its great applicability in functional 

approaches. The main difficulty in its use is the lack of familiarity of researchers in general, since it is a recent 

method in relation to statistical methods [27, 28]. The selection criterion of a network is obtained pragmatically, that 

is, the one that best achieves the expected results. 

Figure 2 shows the time series for the variables: number of dengue cases; average, maximum and minimum 

temperatures; precipitation; and proportions of days in the month with average temperatures below 22° C, from 22° 

C to 26°C and above 26°C. 
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Figure-2. Average hospital admissions for dengue fever, minimum, average and maximum air temperature, 22 and 26 oC, relative humidity and 
precipitation in Campo Grande, MS, 2008-2018 

 
 

Analysis of the distribution of cases showed that most cases were concentrated in the first half of the year, 

especially in March, April and May, highlighting the known seasonality of dengue. The annual average temperatures 

for the period were 24.5°C, for the minimum monthly average temperature of 18°C and for the maximum monthly 

average temperature of 31°C. The accumulated monthly precipitation in the period ranged from 36 to 203 mm, with 

a monthly average of 117 mm. 

Since the data are over-dispersed (sample mean of 15, standard deviation of 33, coefficient of variation of 219, 

minimum of zero and maximum of 229 for a number of observations of 132). 

To predict dengue cases in Campo Grande, a total of 742 MLP network with 14 different input sets were trained 

and tested. As shown in Table 1. 

 
Table-1. Input Data Sets 

Input 

Data 

Set 

Data from 2008 to 2018 

1 Temp Min Temp Max Average Temp Humidity % Prec (mm) 

2 Dengue Cases 1 Month Earlier         

3 Dengue Cases 2 Month Before         

4 Dengue Cases 3 Months 

Earlier 

        

5 Temp Min Temp Max Humidity Precipitation   

6 Temp max Temp média Humidity precipitation   

7 Temp Max Humidity Precipitation     

8 Average Temp Humidity  precipitation     

 Data from Dec 2012 to 2018 

9 Temp Max Umidade % Prec (mm) Dengue t-1   

10 Temp Min Temp Max Temp. Média Humidity % precipitatio

n 

11 Dengue Cases 1 Month Earlier         

12 Dengue Cases 2 Month Before         

13 Temp Min Temp Max Humidity precipitation   

14 Average Temp Humidity precipitation     

 

As the errors were generally high, from the ninth dataset tests were done with data between 12/2012 and 

12/2018. To test whether, with a shorter time interval, errors improved. 

Even with this reduction in the time interval, errors generally remained high, except for some settings where the 

results show low error. The best configuration results for each data set are shown in Table 2. The two networks with 

the lowest RMSE and the two with the lowest MAPE are shown in Table 2. 
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Table-2. Networks that had the best forecasting performance for each input set 

Input 

Set 

Hidden Layer 

Neurons 

Training 

Algorithm 

Activation 

Function 

RMSE MAPE % 

1 7 trainlm tansig 0,10017733 60,009624 

1 7 trainlm logsig 0,04023006 62,062156 

2 7 trainlm logsig 0,00981694 43,457212 

2 15 trainbr tansig 0,05105973 3,1786238 

3 5 trainlm logsig 0,02195326 54,538656 

3 13 trainlm tansig 0,0699479 46,062983 

4 10 trainlm logsig 0,02566376 64,432744 

4 14 trainbr tansig 0,11937793 58,13368 

5 6 trainlm logsig 0,03949868 61,036667 

5 12 trainlm tansig 0,1287968 59,762591 

6 3 trainlm logsig 0,04022625 61,999103 

6 7 trainlm tansig 0,10244501 60,535005 

7 14 trainlm logsig 0,03555447 62,118198 

7 13 trainlm tansig 0,13468548 60,919813 

8 14 trainlm logsig 0,03292532 62,470317 

8 9 trainlm tansig 0,10241897 60,977162 

9 3 trainlm logsig 0,01474401 41,045629 

9 13 trainlm tansig 0,09399882 10,257154 

10 6 trainlm logsig 0,04398324 126,63389 

10 13 trainlm tansig 0,25543051 89,140742 

11 3 trainlm logsig 0,01011579 59,983467 

11 15 trainbr tansig 0,09108138 5,4367983 

12 9 trainbr logsig 0,01894897 47,830235 

12 13 trainbr tansig 0,05592414 3,9534505 

13 3 trainbr logsig 0,05763184 126,32421 

13 14 trainlm tansig 0,16797454 110,50778 

14 9 trainlm logsig 0,05103706 133,19076 

14 4 trainlm tansig 0,12135931 98,948702 

 

Following are graphs of comparison between the output calculated by the and the desired (observed) output. 

Graphs 3 and 4 are the with the lowest RMSE and lowest MAPE, respectively. And Graphs 5 and 6, the with the 

second lowest RMSE and second lowest MAPE, respectively. 

Graph 4 is the output calculated by the with lower RMSE than the desired output (actual value). 

  
Graph-3. 
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Graph-4. 

 
 

Graph 5 is the output calculated by the with lower MAPE in relation to the desired output (real value). 

 
Graph-5. 

 
 

Graph-6. 
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Graph 5 is the output calculated by ANN with second lowest RMSE relative to the desired output (real value). 

  
Figure-7. Scatter diagram between measurements and estimates with RNA models (a, c, and, g); and Residues of RNA models (b, d, f, h.) 

 

 
 

Figure 7 (a, c, e, g) shows the comparison between measured and estimated monthly DE values for. Models a 

and e have the farthest dispersion of regression. The R2 values of the models were 0.518; 0.985; 0.678 and 0.976. 

Scatter diagrams show that models c and e correlated most with measurements. For ANN models, MBE values 

ranged from -0.8866 to 0.406, RMSE values ranged from 0.0098 to 0.0559 and MAPE of models ranged from 3.178 

to 59.98. The ICW had values between 0.003 and 0.83. Based on the metric of model validation statistical indices, it 

is noteworthy that ANN Training 7 logsig and Training 3 logsig underperformed other times15 tasing describes with 

relative precision the estimated ND, followed by ANN Trainbr 13 tasing models. 

 
Table-3. Statistical indicators divided into two groups: dispersion indicators (error indicators) and general performance indicators 

 RNA  

Training 7 

logsig 

RNA Trainbr 

15 tasing 

RNA  

Training 3 

logsig 

RNA Trainbr 

13 tasing 

     Residue Sum Module 52,78590221 3,457078138 62,94995 16,96393602 

Scatter Indexes:     

MBE: 0,406045402 0,026592909 -0,88661898 0,242 

RMSE: 0,00981694 0,05105973 0,01011579 0,05592414 

MAPE: 43,457212 3,1786238 59,983467 3,9534505 

general performance 

indicators: 

    

R²: 0,5183 0,985 0,6788 0,9766 

ICW: 0,83046186 0,83046186 0,003780622 0,107776524 0,005981419 
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3.1. Impacts of Climate Variables on the Life Cycle of Aedes aegypti 
Temperature and precipitation are important environmental factors that affect all biological processes of Ae. 

aegypti. Indeed, there are precise mathematical expressions relating to developmental rates to temperature [29, 30]. 

The rates at which mosquitoes acquire and transmit viruses also depend on temperature [31-33]. Precipitation events, 

in turn, are extremely important for dengue transmission [34, 35]. The abundance of Ae. aegypti is regulated by rain 

during water dependent stages (egg, larva, and pupa), which provides breeding sites and stimulates egg hatching [35, 

36]. 

Relationships between lower temperatures, rainfall and mosquito population size are generally studied in 

countries with temperate climates, where excessive rainfall causes hatching of eggs, but lower temperatures can be 

fatal to larvae [37, 38]. The Brazilian tropical climate, however, may present adequate temperatures for vector 

proliferation even in winter. Thus, we conjecture that winter rain events may play an important role in the first 

generation of mosquitoes that year. A larger initial population, when composed of several reproductive cycles, could 

lead to an epidemic outbreak in summer. As shown in Figure 1, favorable weather conditions in Campo Grande are 

mainly a function of rainfall events. 

Kesorn, et al. [39], recently addressed a decade-long limitation of dengue surveillance systems, namely that 

environmental factors may be unreliable and degrade forecasts when applied in areas with similar climate. The 

prediction accuracy of their model increased dramatically when instead of using weather parameters in a classical 

structure, they used Ae. infection rates by female mosquitoes and aegypti larvae. Our work, on the other hand, was 

able to successfully predict years of dengue using only climate variables. This raises an important question: how 

reliable are the climate parameters for dengue prediction? One possible explanation is that these parameters are 

reliable only on coarser spatial scales, and the large distances between cities in a continental country such as Brazil 

lead to significant climatic differences. Another explanation is that our methodological innovations have improved 

the reliability of local climate factors; Kesorn, et al. [39] ruled out temperature as a good predictor by visual 

inspection of their time series, while allowing a wide range of time intervals that link temperature and future results. 

It would be interesting to see if our approach could improve the reliability of climate signatures in other contexts. 

Daily temperature changes are known to affect Ae efficiency. aegypti [40, 41]. Kesorn, et al. [39] also showed 

that infection rates for female Ae. aegypti and larvae strongly correlate with the number of reported dengue cases in 

humans. In this respect, our method is independent of which specific mechanisms led to an increase in the number of 

human cases. The above factors may be the missing link between climatic variables and observed human cases. 

However, as also pointed out by the authors, it is not always possible to obtain data on mosquito infection rates. To 

our knowledge, there are no data available on female mosquito and larval infection rates in Brazilian cities. 

 

4. Conclusion 
Dengue epidemic control is one of the most pressing public health challenges in tropical countries such as 

Brazil. A better understanding of the long-term, multiple-scale effects of weather conditions on the development of 

Aedes aegypti populations is crucial to improving the timing of vector control efforts and other policies. In this 

paper, we show that climate variables - average temperature, maximum and minimum temperature, relative humidity 

and precipitation - can be crucial for dengue prediction in Brazil. Notably, for Campo Grande, a forecast can be 

made approximately two months before the outbreak, which usually occurs from March to May. However, public 

strategies were typically enacted and decided during this period, which is too late and does not take advantage of the 

predictive capabilities of climate data. 

Thus, the best performances obtained by MLPs modeled with 15 and 13 hidden layer neurons, hyperbolic 

tangent sigmoid activation function and Bayesian Regularization Backpropagation training algorithm and 7 and 3 

occult layer neurons, logistic sigmoid activation function and Backpropagation training Levenberg – Marquardt. The 

input set that obtained this result was composed only by the number of dengue cases in the two months preceding the 

month in which the forecast was made. It is noted that the climatic variables were not the most appropriate to 

estimate the number of dengue cases, since the trained network with information on past dengue cases performed 

better. 

To sum up, the results presented by the developed networks show that it is possible to forecast dengue cases in 

the study areas based on meteorological and historical data of dengue cases from previous months. However, it 

should be noted that, like all mathematical based modeling, the generalization of the results obtained in a specific 

case study cannot be used directly for other cases, since it must be taken into account that the characteristics of each 

region are unique. Therefore the use of models built in this work are restricted for the selected study area. 
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