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Abstract 
Case-Based Reasoning (CBR) is the process of solving new problems (usually with the help of computers) by 

adapting the solutions of similar (analogous) problems solved in the past. The CBR approach has got a lot of 

attention over the last 30-40 years, because as an intelligent-systems method enables information managers to 

increase efficiency and reduce cost by substantially automating processes. In the present work a method is developed 

using Grey Numbers (GNs) as a tool for accessing the effectiveness of CBR systems and examples are provided 

illustrating it. This new assessment method is proved to be equivalent with an analogous method using Triangular 

Fuzzy Numbers that has been developed in earlier author’s works, but it has the advantage of reducing significantly 

the required computational burden. GNs, which are defined with the help of the closed intervals of real numbers, are 

indeterminate numbers whose range  is known, but not their exact value, and they have found nowadays many and 

important applications in science, engineering and in the everyday life for handling approximate data. 

Keywords: Problem-solving (PS); Analogical reasoning (AR); Case-based reasoning (CBR); Grey systems (GS); Grey numbers 

(GNs); Whitening, Fuzzy numbers (FNs); Triangular FNs (TFNs); Centre of gravity (CoG) defuzzification technique; Assessment 

methods. 
 

 

1. Introduction 
In Management a system is defined to be a set of interacting components forming an integrated whole and 

working together for achieving a common target.  A factory, a hospital, a bank, etc. are common examples of 

systems, whereas in general one can distinguish between physical, biological, social, economic, engineering, abstract 

knowledge systems, etc. As a multi- perspective domain systems’ theory serves as a bridge for an interdisciplinary 

dialogue between autonomous areas of study [1]. In the present work we deal with Case-Based Reasoning (CBR) 

Systems. 

The assessment of a system’s performance is a very important part of the systems’ theory, because it enables the 

system’s designer to correct its weaknesses and therefore to increase its effectiveness. When the performance of a 

system’s components is evaluated with numerical scores, then the traditional way for assessing the system’s mean 

performance is the calculation of the mean value of those scores. However, in order to comfort the user’s existing 

uncertainty about the exact value of the numerical scores corresponding to  each of the system’s components, 

frequently in practice the assessment is made not by numerical scores but by qualitative linguistic expressions, like 

excellent, very good, good, etc, which makes the calculation of their mean value impossible.  

A popular in such cases method for evaluating the overall system’s performance is the calculation of the Grade 

Point Average (GPA) index [2]. However, GPA is a weighted average in which greater coefficients (weights) are 

assigned to the higher grades, which means that it reflects not the mean, as we wish, but the quality system’s 

performance. 

In order to overcome this difficulty we have utilized in earlier works the system’s total uncertainty under fuzzy 

conditions (because of the qualitative assessment of its components) as a measure of its effectiveness [2]. This 

manipulation is based on a fundamental principle of the Information Theory according to which the reduction of a 

system’s uncertainty is connected to the increase of information obtained by a system’s activity. In other words, 

lower uncertainty indicates a greater amount of information and therefore a better system’s performance with respect 

to the corresponding activity. However, this method needs laborious calculations, cannot give a precise qualitative 

characterization of a system’s performance and, most importantly, it is applicable for comparing the performance of 

two different systems with respect to a common activity only under the assumption that the existing uncertainty is 

the same in the two systems before the activity. This was the reason for turning in later works to the use of Fuzzy 

Numbers (FNs) for the assessment of a system’s mean performance under fuzzy conditions [2]. 

In the present work Grey Numbers (GNs) are used for assessing the performance of CBR systems. This method 

is proved to be equivalent to the use of a special form of FNs, the Triangular FNs (TFNs), but it has the advantage of 

reducing significantly the required computational burden. Moreover, the GNs are defined easily with the help of the 

closed intervals of real numbers, in contrast to the TFNs that need the knowledge of some basic elements of the 

theory of Fuzzy Sets (FS). 

The rest of the paper is formulated as follows: Section 2 is devoted to a brief description of the CBR process. In 

Section 3 the assessment method with the TFNs is briefly recalled and the necessary information about GNs is given, 

needed for the understanding of the article. The new assessment method using GNs is developed in Section 4 and its 
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equivalence to the method with TFNs is also proved.  Examples with CBR systems illustrating those methods are 

presented in Section 5. The article closes with the conclusions of the present research and a short discussion on the 

perspectives of future research on the subject presented in Section 6.  

 

2. Case-Based Reasoning   
CBR is a recent theory for Problem-Solving (PS) and Learning in computers and people. Broadly construed it is 

the process of solving new problems based on the solutions of similar past problems, i.e. a kind of analogy making. 

A lawyer, who advocates a particular outcome in a trial based on legal precedents, a physician who treats a patient 

based on the treatment of previous patients suffering from the same disease, or an auto mechanic who fixes a car’s 

engine by recalling another car that exhibited similar symptoms, are using CBR  

The importance of Analogical Reasoning (AR), in human thinking has been recognized many years ago. In fact, 

there are many studies developed and many experiments performed on individuals by mathematicians, psychologists 

and other scientists about the AR process [3]. However, it is the CBR approach that has got a lot of attention over the 

last 30-40 years, because as an intelligent systems’ method enables information managers to increase efficiency and 

reduce cost of many human activities by substantially automating processes, such as diagnosis, scheduling and 

design [3]. Notice that the term AR has been sometimes used as a synonymous to the typical CBR approach [4]. 

Nevertheless, it has also been frequently used to characterize methods that solve new problems based on past cases 

of different domains [5, 6], whereas the typical CBR methods focus on single-domain cases (a form of intra-domain 

analogy). 

CBR is often used where experts find it hard to articulate their thought processes when solving problems. This 

happens because knowledge acquisition for a classical knowledge-based system would be extremely difficult in such 

cases, and is likely to produce incomplete or inaccurate results. When using CBR the need for knowledge acquisition 

can be limited to establishing how to characterize cases, i.e. the analogous problems’ situations. A case-library can 

be a powerful corporate resource allowing everyone in an organization to tap in it, when handling a new problem. A 

CBR system, usually designed and functioning with the help of computers, allows the case-library to be developed 

incrementally, while its maintenance is relatively easy and can be carried out by domain experts. 

In CBR the term PS is used in a wide sense, which means that it is not necessarily the finding of a concrete 

solution to an application problem, it may be any problem put forth by the user. For example to justify or criticize a 

proposed solution, to interpret a problem’s situation, to generate a set of possible solutions, or generate explanations 

in observable data, are also PS situations. Many experts distinguish between two styles of CBR, the PS style and the 

interpretive style. The PS style can support a variety of tasks including planning, diagnosis, help-desk applications, 

assessment, design, etc.; e.g. in Medicine [7], Industry [8], Robotics [9], etc. The interpretive style is useful for 

classification, evaluation or justification of a solution, argumentation and for the projection of effects of a decision. 

Lawyers and managers making strategic decisions use the interpretive style [10]. Organizations as diverse as IBM, 

VISA International, Volkswagen, British Airways and NASA have already made use of CBR in fields like customer 

support, quality assurance, aircraft maintenance, process planning, and many more that are easily imaginable. 

The coupling of CBR to learning occurs as a natural by-product of PS. When a problem is successfully solved, 

the experience is retained in order to solve similar problems in future. When an attempt to solve a problem fails, the 

reason for the failure is identified and remembered in order to avoid the same mistake in future. Thus CBR is a 

cyclic and integrated process of solving a problem, learning from this experience, solving a new problem, etc.  

CBR has been formalized for purposes of computer and human reasoning as a four steps process, often referred 

as the “four R’s”. These steps involve: 

 R1: Retrieve the most similar to the new problem past case. 

 R2: Reuse the information and knowledge of the retrieved case for the solution of the new problem. 

 R3: Revise the proposed solution. 

 R4: Retain the part of this experience likely to be useful for future problem solving. 

The first three of the above steps are not linear, characterized by a backward - forward flow among them. A 

simplified flow - chart of the CBR process, which is adequate for the purposes of the present paper, is presented in 

Figure 1 below: 

 
Figure-1. A simplified flow-chart of the CBR process 

 
 

A detailed functional diagram illustrating the four steps of the CBR process is presented in Voskoglou and 

Salem [3].  

CBR traces its roots in Artificial Intelligence to the work of Roger Schank and his students at Yale University, 

U.S.A. in the early 1980’s. Schank [11] model of dynamic memory was the basis of the earliest CBR systems that 

might be called case-based reasoners,  the Kolodner [12] CYRUS and the Lebowitz [13] IPP. More details about the 

CBR methodology, history and applications can be found in [3, 14] and in the relevant references given in the 

previous papers.  

As a general PS methodology intended to cover a wide range of real-world applications, CBR must face the 

challenge to deal with uncertain, incomplete and vague information. Correspondingly recent years have witnessed an 
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increased interest in formalizing parts of the CBR methodology within frameworks of reasoning under uncertainty, 

and in building hybrid approaches by combining CBR with methods of uncertain and approximate reasoning; e.g. 

see [2] and its relevant references.  

 

3. Mathematical Background 
3.1 Triangular Fuzzy Numbers (TFNs) 

It is assumed that the reader is familiar with the basic principles of the theory of Fuzzy Sets (FS) and the book of 

Klir and Folger [15] is proposed as a general reference on the subject. It is recalled that a FS on the set of the 

discourse U is a set A of ordered pairs {(x, mA(x)), xU}, where mA : U   [0, 1] is its membership function. The 

closer is the membership degree mA(x) of x in U to 1, the better x satisfies the characteristic property of A.   

A Fuzzy Number (FN), say A, is a FS on the set R of the real numbers, which is normal (i.e. there exists x in R 

such that mA(x) = 1) and convex (i.e. all its a-cuts A
a 

= {xU: mA (x)   a}, a in [0, 1], are closed real intervals) and 

whose membership function y = mA (x) is a piecewise continuous function. For general facts on FNs we refer to the 

book of Kaufmann and Gupta [16] 

A Triangular FN (a, b, c), with a, b, c real numbers such that a < b < c is the simplest form of a FN representing 

mathematically the fuzzy statement that “the value of b lies in the interval [a, c]”. The membership function y = m(x) 

of (a, b, c) is zero outside the interval [a, c], while its graph in [a, c] consists of two straight line segments forming a 

triangle with the OX axis. 

Therefore we have: 

 

 

 

 

 

 

 

Using elementary methods of Analytic Geometry it is straightforward to check [2] that the coordinates (X, Y) of 

the Centre of Gravity (CoG) of the graph of the TFN  A = (a, b, c) are calculated by the formulas  

X (A) = 3

a b c 

,  Y(A) = 

1

3            (1)      . 

 

The first of formulas (1) can be used to defuzzify the TFN A (CoG defuzzification technique), e.g. see [17], i.e. 

to represent it by a crisp number. 

    There are known two equivalent general methods for defining arithmetic operations on FNs (Kaufmann & 

Gupta, 1991). Those methods lead to the following simple rules for the addition and subtraction of TFNs: 

Let A = (a, b, c) and B = (a1, b1, c1) be two TFNs. Then one defines: 

 The sum A + B = (a+a1, b+b1, c+c1). 

 The difference A - B = A + (-B) = (a-c1, b-b1, c-a1), where –B = (-c1, -b1, -a1) is defined to be the opposite 

of B. 

On the contrary, the product and the quotient of A and B are FNs, which are not TFNs in general, apart from 

some special cases. 

    The following two scalar operations can be also defined: 

 k + A= (k+a,  k+b,  k+c), kR 

 kA = (ka,  kb,  kc), if k>0 and kA = (kc, kb, ka), if k<0, kR. 

 

3.2 The Assessment Method using TFNs  
For the better understanding of the present work our assessment method using TFNs developed in earlier works  

[2] is recalled here in brief.  

For this, let Ai, i = 1, 2,…, n  be given TFNs, where n is a non negative integer, n  2. Then, we define the mean 

value of the Ai’s  to be the TFN A = 
 

 
 (A1 + A2 + …. + An). 

The qualitative grades A = excellent, B = very good, C = good, D = fair and F = unsatisfactory are considered 

for the assessment of a system’s performance and a scale of numerical scores from 1 – 100 is assigned to them as 

follows: A (85 - 100), B (75 - 84), C (60 – 74), D (50 - 59) and F (0 - 49) 
1
.  

Then, each of the above grades can be represented by a TFN, denoted for simplicity by the same letter, as 

follows: A = (85, 92.5, 100), B = (75, 79.5, 84), C (60, 67, 74), D (50, 54.5, 59) and F (0, 24.5, 49). The middle entry 

of each of the above TFNs is equal to the average of its other two entries. In other words, if A (a1, b1, c1), B (a2, b2, 

c2),…., F(a5, b5, c5), then   
      

 
,  i = 1, 2, 3, 4, 5. 

In order to assess the total system’s effectiveness, the performance of each of the system’s components is 

evaluated by one of the above five qualitative grades, which means that one of the TFNs A, B, C, D, F can be 

assigned to each component.  

Let n be the total number of the system’s components and let nX be the number of the components 

corresponding to the TFN X, where X = A, B, C, D, F. Then the mean value M of all those TFNs is equal to the TFN 

M(a, b, c) =  
 

 
 ( nA A + nB B  +  nCC  +  nDD + nFF)     (2) . 

, [ , ]

( ) [ , ]

0,        

x a
x a b

b a

c x
y m x x b c

c b

x a or x c

 





   


  


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Since the calculation of the mean value of the qualitative grades is not possible, it looks logical to consider the 

TFN M as the fuzzy representative for evaluating the system’s mean performance.    Replacing the values of the 

TFNs A, B, C, D and F in equation (2) it is straightforward to check that  

M(a,b,c)=( 85 60 0+ 75 50A B C D Fn n n n

n

n   , + 79.5 54.5
,

92.5 67 24.5A B C D Fn n n

n

n n

100 74 4 84 59 9+A B C D Fn n n n n

n

  ). Then, equation (1) gives that 

X (M)  =  
+ 7992.5 67 24.5.5 54.5

3 2

A B C D Fn n na b c a c
b

n

n n  



 


 (3) . 

The value of X (M) provides a crisp representation of the TFN M evaluating the system’s mean performance. 

     

3.3 Grey Numbers  
Frequently in the everyday life, as well as in many applications of science and engineering, a system’s data 

cannot be easily determined precisely and in practice estimates of them are used. The reason for this is that in large 

and complex systems, like the socio – economic, the biological ones, etc., many different and constantly changing 

factors are usually involved, the relationships among which are indeterminate, making their operation mechanisms to 

be not clear.  

Nowadays two are the main tools for handling such approximate data: Fuzzy Logic (FL), which is based on the 

notion of FS initiated by Zadeh [18] and the theory of Grey System (GS) initiated by Deng [19]. The GS theory was 

mainly developed in China and it has found nowadays important applications in agriculture, economy, management, 

industry, ecology, environment, meteorology, geography, geology, earthquakes, history, military affairs, sports, 

traffic, material science, biological protection and in many other fields of the human activity; see Deng [20] and its 

relevant references.  

Roughly speaking, a GS is understood to be any investigated system with “poor” information. More explicitly, 

the systems which lack information, such as structure message, operation mechanism and behaviour document, are 

referred to as GSs. For example, the human body, the world economy, etc., are GSs. Usually, on the grounds of 

existing grey relations and elements one can identify where "grey" means poor, incomplete, uncertain, etc. 

The aim of  the GS theory is to provide techniques, notions and ideas for analyzing latent and intricate systems, 

including the establishment of non-function models, the development of a grey process replacing an existing 

stochastic process,  the transformation of disorderly raw data into a more regular series by grey generating 

techniques instead of modelling with the original data; grey decision making, grey forecasting control replacing 

classical control, the study of feeling and emotion functions and fields with whitening functions, the study in general 

of grey mathematics instead of classical mathematics, etc [20]. 

An effective tool for handling the approximate data of a GS is the use of GNs. A GN is an indeterminate number 

whose probable range is known, but which has unknown position within its boundaries. The GNs are defined with 

the help of the closed real intervals. More explicitly, if R denotes the set of real numbers, a GN, say A, can be 

expressed mathematically by 

A  [a, b] = {x  R : a  x  b}. 

If a = b, then A is called a white number and if A
( , ) 

, then it is called a black number.  The GN A 

may enrich its uncertainty representation with respect to the interval [a, b] by a whitening function f: [a, b]   [0, 1] 

defining a degree of greyness f(x) for each x in [a, b]. The closer is f(x) to 1, the greater the probability for x to be the 

representative real value of the GN A. For general facts on GNs we refer to Liu and Lin [21]. 

The well known arithmetic of the real intervals [22] has been used to define the basic arithmetic operations 

among the GNs. More explicitly, if A  [a1, a2] and B  [b1, b2] are given GNs and k is a real number, one defines: 

 Addition by A + B  [a1 + b1, a2 + b2] 

 Subtraction by A - B  = A + (-B)  [a1 - b2, a2 – b1], where - B  [-b2, -b1]  is defined to be the opposite of  

B. 

 Multiplication by A x B  [min{a1b1, a1b2, a2b1, a2b2}, max{a1b1, a1b2, a2b1, a2b2}] 

 Division by A : B = A x B
-1

 [min{

1 1 2 2

1 2 1 2

, , ,
a a a a

b b b b
}, max{

1 1 2 2

1 2 1 2

, , ,
a a a a

b b b b
}], where 0 [b1, b2] and B

-1

2 1

1 1
[ , ]
b b



 is defined to be the inverse of B . 

 Scalar multiplication by kA  [ka1, ka2], if  k 0 and by kA  [ka2, ka1], if k <0 . 

     

    Observe that B + (-B)  [b1 - b2, b2 – b1] [0, 0]= 0, B + (-B) (-B) + B 0 and  

B x B
-1

 = B
-1

 x B

1 2

2 1

[ , ]
b b

b b


 [1, 1] =  1. 

 

The white number with the greatest probability to be the representative real value of the GN A [a, b] is 

denoted by W(A). The technique of determining the value of w (A) is called whitening of  A. One usually defines 

   



 


 



 

 




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W(A) = (1- t)a + tb, with t in [0, 1]. This is known as the equal weight whitening. In this case, if the distribution of A 

is unknown (i.e. no whitening function has been defined for A), one takes t =  
 

 
, which gives that W(A) = 

   

 
   (4). 

 

4. The Assessment Method with GNs 
According to equation (3) at the end of Section 3.2 in order to calculate X(M) it is enough in practice to 

calculate the middle entry b only of the TFN M(a, b, c). This gives the impulse to search for a possible “formal” 

assessment procedure, similar to that of using TFNs, reducing the required computational burden, which led us to the 

utilization of GNs instead of TFNs for a system’s assessment. 

For this, considering again the numerical scores A (100-85), B(84-75), C (74-60), D(59-50), F(49-0) attached to 

the corresponding  qualitative grades, we correspond to each grade a GN, denoted for simplicity with the same letter, 

as follows: A  [85, 100], B [75, 84], C  [60, 74], D [50, 59] and F [0, 49].  

Next, assigning to each of the system’s components the GN assessing its individual performance and keeping 

the same notation as in the case of the TFNs, we consider the mean value  

M* = 
 

 
 [nAA + nBB + nCC + nDD + nFF]     (5) 

of all those GNs as the representative of the system’s mean performance. 

But nAA [85nA, 100nA], nBB [75nB, 84nB], nCC [60nC, 74nC], nDD [50nD, 59nD] and nFF [0nF, 49nF], therefore 

it turns out that M  [m1, m2], with 

m1 = 

85 60 0+ 75 50A B C D Fn n n n

n

n  

 and   m2 =

100 74 4 84 59 9+A B C D Fn n n n n

n

 

. 

   

Since the distributions of the GNs A, B, C, D and F are unknown, the same happens with the distribution of M*. 

Therefore, one can take  

W(M*) = 

1 2

2

m m

   (6). 

From equations (3) and (6) it turns out that X(M) = W(M*), which means that the assessment methods of a 

system’s mean performance using as tools the TFNs or the GNs A, B, C, D and F respectively are equivalent to each 

other, providing the same assessment outcomes. 

Moreover, one observes that in the extreme case where the maximal possible numerical score corresponds to 

each component for each grade, i.e. the nA scores corresponding to A are 100, the nB scores corresponding to B are 

84, etc., the mean value of all those scores is equal to c or m2 respectively. Also, in the opposite extreme case, where 

the minimal possible numerical score corresponds to each component for each linguistic grade, i.e. the nA scores 

corresponding to A are 85, the nB scores corresponding to B are 75, etc,. the mean value of all those scores is equal to 

a or m1 respectively. Consequently, the assessment methods with the TFNs and the GNs give a reliable 

approximation of the system’s mean performance and therefore they are useful when no numerical scores are used, 

but the system’s performance is assessed by qualitative grades   

 

5. Examples on the Assessment of CBR Systems 
In this Section we provide two examples in which our models with GNs / TFNs presented in Sections 4 and 3.2 

respectively are used for the assessment of the effectiveness of CBR systems. Our assessment approach is validated 

by comparing its outcomes in our applications with the corresponding outcomes of two classical assessment methods 

of the bi-valued logic, the calculation of the mean values and of the GPA index. 

Example 1:  Consider two CBR systems designed for help desk applications with their libraries containing 105 

and 90 past cases respectively. The two systems’ designers have supplied them with the same mechanism (software) 

that enables the assessment of the degree of success of each one of their past cases at each step of the CBR process, 

when used for the solution of new similar problems. Table 1 depicts the degree of success of their past cases in each 

of the three first steps of the CBR process  

 
Table-1. Assessment of the past cases of the CBR systems FIRST SYSTEM 

Steps F D C B A 

R1 0 0 51 24 30 

R2 18 18 48 21 0 

R3 36 30 39 0 0 

 
Second System 

 

 

 

 

 

Here we shall compare the quality performance of the two systems by calculating the GPA index and their mean 

performance by applying our methods with the TFNs or the GNs. 

i) GPA index: Denote by yi , i =  1, 2, 3, 4, 5 the frequencies of  the CBR system’s cases whose performance is 

characterized by F, D, C, B and A respectively, then the GPA index is calculated by the formula  

    

    


Steps F D C B A 

R1 0 18 45 27 0 

R2 18 24 48 0 0 

R3 36 27 27 0 0 
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GPA = y2 + 2y3 + 3y4 + 4y5   (7). 

In case of the ideal performance (y5 = 1) we have GPA = 4, while in case of the worst performance (y1 = 1) we 

have GPA = 0; therefore 0   GPA   4. Consequently, values of GPA greater than 2 could be considered as 

corresponding to a more than satisfactory system’s performance. In our case, the data of Table 1 give the following 

frequencies:  

 
Table-2. Frequencies of the past cases for the CBR systems FIRST SYSTEM 

Steps y1 y2 y3 Y4 Y5 

R1 0 0 
51

105  

24

105  

30

105  

R2 
18

105  

18

105  

48

105  

21

105  
0 

R3 
36

105  

30

105  

39

105  
0 0 

 
Second System 

Steps y1 y2 y3 Y4 Y5 

R1 0 
18

90  

45

90  

27

90  
0 

R2 
18

90  

24

90  

48

90  
0 0 

R3 
36

90  

27

90  

27

90  
0 0 

 

Replacing the values of frequencies from Table 2 in formula (2) one finds the following values for the GPA 

index:   

 
The above values of the GPA index show that the first system demonstrated a better quality performance at 

steps R1 and R3 (Retrieve, Revise). Whereas the second one demonstrated a better performance at R2 (Reuse). 

Further, the two systems’ performance was proved to be more than satisfactory in R1 and less than satisfactory in the 

other two steps, being worse at R3. This was logically expected, since the success in each step depends on the 

success in the previous steps. Notice that the two systems’ performance at the last step R4 was not examined, since, 

as we have seen in Section 2, all past cases, even the unsuccessful ones, are retained in a system’s library for 

possible use in future with related new problems; the unsuccessful ones to help for exploring possible reasons of 

failure to find a solution for the new problem. 

Finally, the mean values of the GPA index for the two systems at the three steps R1, R2 and R3 are approximately 

equal to 1.84 and 1.62 respectively, showing that the first system demonstrated a better overall quality performance.    

    ii) Use of the TFNs: From the data of Table 1 one finds that for the first system and  in step R1 we have 51 

TFNs equal to C(60, 67, 74), 24 TFNs equal to B(75, 79.5, 85) and 30 TFNs equal to A(85, 92.5, 100). The mean 

value of all those TFNs, denoted for simplicity by the same letter R1, is equal to  

R1 = 

1

105 (51C + 24B + 30A) = 

1

105 [(3060, 3417, 3774) + (1800, 1908, 2016) + (2550, 2775. 3000) = 

1

105 (7410, 

8100, 8790)  (70.57, 77.14, 83.71). 

Therefore, from equation (3) one gets that X (R1) = 77.14, which shows that the first system demonstrated a 

very good (B) performance at step R1.  

In the same way one calculates for the first system the mean values  

 

R2 = 

1

105 (18F + 18D+ 48C + 21B)   (51, 60.07, 69.14) and 

R3 = 

1

105 (36F + 30D + 39C)   (36.57, 48.86, 61.14), thus obtaining the analogous conclusions for the system’s 

performance at the steps R2 and R3 of the CBR process. 

Finally, the overall system’s performance can be assessed by the mean value  

R = 

1

3 (R1 + R2 + R3)   (52.71, 62.02, 71.33), 

Therefore, since X(R) = 62.02, the system demonstrated a good (C) mean performance.  

A similar argument gives for the second system the values R1 = (62.5, 68.25, 74),  
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R2  (45.33, 55.17, 65), R3 = (33, .46.25, 59.5) and R   (46.94, 56.56, 66.17), thus obtaining the analogous 

conclusions for its mean performance at each step of the CBR process and its overall mean performance.  

iii) Use of the GNs: According to this approach  in step R1 we have 51 GNs equal to C[60,74], 24 GNs equal 

to B  [75, 84] and 30 GNs equal to A  [85, 100]. The mean value of all those GNs, denoted by R1*, is equal to  

R1* = 

1

105 (51C + 24B + 30A)   [70.57, 83.71]. 

Therefore, W (R1*) = 

70.57 83.71

2



=  77.14, etc. 

As we have seen in Section 4 this approach provides in general the same assessment outcomes with the use of 

TFNs, but, as it becomes more evident from the present example, it reduces significantly the required computational 

burden. Table 3 depicts the assessment outcomes obtained in this example  

 
Table-3. Outputs of the Assessment Methods Used in Example.1 

METHOD OUTPUT 

GPA index 
The first system demonstrated a better overall quality performance and a better quality 

performanceat steps R1 and R3, while the second system performed better at step R2 

TFNs /GNs The first system demonstrated a better mean performance at all the steps of the CBR process 

 

The outcomes of Table 3 give emphasis to the fact that the assessment of a system’s quality performance could 

lead to different outcomes from the assessment of its mean performance (step R2). 

Example 2: Six different users of a CBR system ranked with scores from 0-100 the effectiveness of its following 

five past cases for solving new related problems:  

C1 (Case 1): 43, 48, 49, 49, 50, 52, C2: 81, 83. 85, 88, 91, 95, C3: 76, 82, 89, 95, 95, 98, C4: 86, 86, 87, 87, 87, 

88, C5: 35, 40, 44, 52, 59, 62.  

The mean value of the given, 6X5 = 30 in total numerical scores is approximately equal to 72.07 demonstrating 

a good (C) mean performance of the system with respect to the above five past cases. For reasons of comparison of 

the assessment outcomes the system’s mean performance will also be calculated here by using our model with the 

GNs. 

In fact, the given numerical scores correspond to 14 GNs equal to the GN A, 4 equal to B, 1 equal to C, 4 equal 

to D and 7 GNs equal to the GN F. The mean value of the above GNs is equal to  

M* = 

1

30 (14A + 4B + C + 4D + 7F) [60.33, 79.63]. 

 

Therefore, from equation (6) one obtains that W(M*) = 69.98. Consequently the CBR system demonstrates a 

good mean performance with respect to the given five past cases. However the exact score corresponding to the 

system’s mean performance is equal to the mean value 72.02 of the given numerical scores. In concluding, the 

assessment model using GNs (or TFNs), although it gives a good approximation of the system’s mean performance, 

it is actually useful only when the effectiveness of the system’s past cases is evaluated by qualitative grades and not 

by numerical scores, because in this case the calculation of the mean value of those grades is not possible..    

 

6. Conclusions and Discussion 
A method using GNs as tools was developed in the present research for assessing a system’s mean performance, 

which is useful when using qualitative grades and not numerical scores for this purpose. This new method was 

proved to be equivalent with an analogous method using TFNs instead of GNs developed in earlier works, but it 

reduces significantly the required computational burden, since it requires the calculation of two components only 

(instead of three in case of the TFNs) for obtaining the mean value of the GNs. Examples were also presented on the 

assessment of CBR systems illustrating our results and showing that the system’s quality performance, calculated by 

the traditional GPA index, may lead to different assessment conclusions. 

Although the enormous development of technology during the last years makes easier and more comfortable the 

human life, it creates in parallel more and more complicated artificial systems, which are difficult to be managed by 

the traditional scientific methods. As a result, the applications of FL and of the GS theory have been rapidly 

expanded nowadays covering almost all sectors of the human activities. In particular the FNs and the GNs  have 

been proved to be effective tools in handling approximate and /or uncertain data, playing  an important role in fuzzy 

mathematics and  in GS theory respectively, analogous to the role played by the ordinary numbers in crisp 

mathematics. Therefore, the attempt to use FNs or / and GNs to other practical problems, apart from the assessment 

purposes, in science and technology and in the everyday life, looks as a very interesting and promising direction for 

future research on the subject. Note that such efforts have been already started by  the present author  on solving 

equations, systems of equations and linear programming problems with fuzzy or grey data, connected to real life 

applications  [23]. 
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