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Abstract 
In multiple criteria decision making (MCDM) with interval-valued belief distributions (IVBDs), individual IVBDs 

on multiple criteria are combined explicitly or implicitly to generate the expected utilities of alternatives which can 

be used to make decisions with the aid of decision rules. Optimization models are usually constructed to implement 

such combination. To analyze a MCDM problem with a large number of criteria and grades used to profile IVBDs, 

effective algorithms are required to find the solutions to the optimization models within a large feasible region. We 

anticipate experimental results will indicate that particle swarm optimization algorithm is the best one to combine 

individual IVBDs and generate the minimum and maximum expected utilities of alternatives among the four 

algorithms. 
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1. Introduction 
In an era of Internet and Big Data, people’s lifestyle has undergone an unprecedented revolution. People’s life is 

filled with a lot of data, which makes people more informative than ever before and meanwhile makes people be 

faced with the dilemma of choosing between deriving useful information and knowledge from data for real practices 

and abandoning their attempt to employ data in real problems. To follow the era, people usually select to find 

effective information and knowledge from various types of data and use them in practical cases. Such a choice 

contributes to the improvement of people’s capability to handle complex problems. The choice also results in more 

uncertain environment associated with real problems than before due to the randomness, unavailability, noise, 

sparsity, and variety of data. In the environment people may have difficulties in directly finding overall solutions to 

real problems. A feasible way to overcome the difficulties is that real problems are analyzed from multiple different 

perspectives and then the relevant analyses are combined to generate the overall solutions to the problems. This way 

is considered as multiple criteria decision making (MCDM) in the uncertain environment. To effectively model and 

analyze uncertain MCDM problems, many attempts have been made with the help of different uncertain expressions. 

Representative expressions include intuitionistic fuzzy set [1], hesitant fuzzy linguistic set  [2], hesitant fuzzy set [3], 

probabilistic linguistic set [4], belief distribution [5], interval-valued fuzzy set [6], interval-valued hesitant fuzzy 

linguistic set [7], interval-valued intuitionistic fuzzy set [8], interval-valued hesitant fuzzy set [9], interval type-2 

fuzzy set Wang and Chen [10] and interval-valued belief distribution [11]. In theory, MCDM methods with these 

expressions seem to be sufficient for analyzing all real problems. From real cases or numerical examples in these 

studies, few methods are found to aim to solve large-scale problems with a large number of alternatives and criteria. 

In addition to this, when interval-valued assessments are adopted, such as interval-valued hesitant fuzzy elements or 

interval-valued belief distributions, the search space for finding solutions will increase exponentially along with the 

increase in the number of values in interval-valued hesitant fuzzy elements or the number of grades in interval-

valued belief distributions. To find acceptable or satisfactory solutions within limited time, evolutionary computation 

provides a feasible and effective way. When MCDM problems are regarded as multi-objective optimization (MOO) 

problems constructed on a common set of variables, many evolutionary MOO approaches have been developed to 

find the optimum trade-off among criteria which is the most consistent with the preference of a decision maker [12-

17]. Three ways, namely priori, interactive, and posteriori ones, are usually applied to combine the preferences of a 

decision maker with the MOO process [15, 16]. If the preferences of a decision maker are not considered in the 

MOO process, the results of the MOO are difficult to be satisfactory to the decision maker.  

In practice, individual assessments on different criteria may not be always constructed on a common set of 

variables. For example, a radiologist determines whether a nodule of an inpatient is malignant form the perspectives 

of contour, echogenicity, calcification, and vascularity. It cannot be said that the judgments on the nodule with the 
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consideration of contour and those with the consideration of any other perspective are made by the radiologist 

through the same set of variables (or features). As another example, when the same discipline in different 

universities is compared, many criteria will be considered, such as research projects, publications, awards, patents, 

social services, and excellent alumni. Individual assessments on different criteria are generated from different data 

rather than common data. When encountering these situations, a decision maker takes into account the individual 

assessments on all criteria synthetically rather than improves the values of most objectives and balances them to 

generate solutions. MCDM problems with large search spaces in these situations can also be solved by using 

evolutionary algorithms. For example, Javanbarg, et al. [18] used particle swarm optimization (PSO) algorithm 

Kennedy and Eberhart [19] to solve MCDM problems modeled by fuzzy analytic hierarchy process, and Chen and 

Huang [20] used PSO algorithm to solve MCDM problems modeled by interval-valued intuitionistic fuzzy numbers. 

Existing studies show that less attention is paid to the application of evolutionary algorithms to MCDM with 

different sets of variables used on different criteria. This makes it questionable whether MCDM methods with 

different ways to characterize different types of uncertain nature [3], [7-11] can be applied in solving MCDM 

problems with large search spaces. There is a gap between the solution requirements of large-scale MCDM problems 

and the relevant studies on effective solution approaches. Although there are few studies on the combination of 

evolutionary algorithms and MCDM with different sets of variables (e.g., [18-20], some important issues deserve 

investigation. The issues include: (1) why PSO algorithm is selected to be applied in MCDM; (2) whether PSO 

algorithm can be applied in MCDM with different types of uncertain expressions other than interval-valued 

intuitionistic fuzzy numbers and fuzzy triangular numbers; and (3) which evolutionary algorithm is of better 

performance when applied in MCDM with a specific type of uncertain expression. In fact, different evolutionary 

algorithms can be applied to solve the same real problem. For example, when determining the near-optimal scheme 

for recharging batteries at a battery swapping station, Wu et al. [21] used three representative evolutionary 

algorithms including genetic algorithm (GA) [22, 23], differential evolution (DE) algorithm Storn and Price [24] and 

PSO algorithm to find the minimum running cost. Their experimental results show that GA and DE algorithm 

achieve higher accuracy and lower efficiency than PSO algorithm, and specifically PSO algorithm fails to obtain the 

acceptable objective. Inspired by this, much attention should be4 paid to a key issue, which is to compare the 

accuracy Wu, et al. [21], Pei, et al. [25] and efficiency  [14], [26] performances of different representative 

evolutionary algorithms for solving large-scale MCDM problems with specific types of uncertain expressions and 

different sets of variables. In this paper, to address the key issue, we aim to compare the accuracy and efficiency 

performances of four representative evolutionary algorithms, which are GA, DE algorithm, PSO algorithm, and 

gravitational search algorithm (GSA) [27], for analyzing MCDM problems modeled by interval-valued belief 

distributions (see Section 2). As the combination of individual interval-valued belief distributions is an important 

and necessary sub-process of MCDM, the processes of implementing the combination by using the four algorithms 

are presented. To conduct a fair comparison among the four algorithms, their original versions instead of their 

extensions are adopted in the processes. With the aid of the processes, experiments with different numbers of criteria 

and grades used to profile interval-valued belief distributions are performed to compare the accuracy and efficiency 

performances of the four algorithms for combining interval-valued belief distributions and generating the expected 

utilities. The comparative analysis of experimental results helps select the appropriate evolutionary algorithm to find 

satisfactory solutions to MCDM problems with interval-valued belief distributions within limited or acceptable time. 

A sensitivity analysis of the accuracy and efficiency performances of the four algorithms is provided to highlight the 

conclusion drawn from the comparative analysis 

 

2. Preliminaries  
2.1. Modeling of MCDM problems by using belief distributions In the evidential reasoning (ER) approach [28-

31], which is a type of multiple criteria utility function method, belief distribution is used to characterize the 

uncertain preference of a decision maker. As belief distribution is a special case of interval-valued belief distribution, 

how to model MCDM problems by using belief distribution is recalled first. Suppose that alternative al (l = 1, …, M) 

is evaluated on criterion ei (i = 1, …, L) by using a set of grades Ω = {H1, H2, …, HN}, which is increasingly 

ordered from worst to best. When B(ei(al)) (i = 1, …, L, l = 1, …, M) is given, a belief decision matrix SL×M is 

obtained. Assume that criteria weights are represented by w = (w1, w2, …, wL) such that 0 ≤ wi ≤ 1. Through 

combining individual belief distributions B(ei(al)) (i = 1, …, L, l = 1, …, M) by using criteria weights and the ER 

rule [32], the overall belief distribution is obtained as B(al) = {(Hn, βn(al)), n = 1, …, N; (Ω, βΩ(al))}. Similar to 

individual belief distribution, βΩ(al) represents the degree of aggregated global ignorance. It is not easy to directly 

compare the aggregated belief distributions of different alternatives in most cases. To facilitate comparison, B(al) (l 

= 1, …, M) is transformed by using the utilities of grades u(Hn) (n = 1, …, N) to the minimum and maximum 

expected utilities. From u-(al) and u+(al), a decision rule, such as Hurwicz rule [33, 34], can be used to aid in 

generating solutions. 2.2 Combination of belief distributions The contents in the above section show that the ER rule 

[35] is the key to find solutions to MCDM problems modeled by belief distributions, which is simply presented as 

follows. Definition 1 [35]. Given individual assessments B(ei(al)) (i = 1, …, L) and their weights wi, the 

combination result of the first i assessments is defined as  
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In Definition 1, P(Ω) represents the power set of Ω, and it is satisfied that 0 ≤ βn,b(i)(al),  

βΩ,b(i)(al).  

2.2. Modeling of MCDM problems by using interval-valued belief distributions Due to lack of sufficient data 

and knowledge or the nature of decision problems under consideration, a decision maker can only provide interval-

valued belief distributions (IVBDs) as the evaluations of alternatives in some situations. For example, when a 

radiologist provides the diagnostic category in thyroid imaging reporting and data system published by Horvath et al. 

[36] for the thyroid nodule of an inpatient, he only reports the interval-valued cancer risk rather than precise cancer 

risk of the inpatient.  

In this situation, individual IVBDs are represented. If it is satisfied that , the IVBDs are called valid ones [37]. 

Or else, they are invalid and cannot be used to generate valid belief distributions. Valid IVBDs are said to be 

normalized [37, 38] only when it is satisfied that 
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Normalized IVBDs are valid but valid IVBDs may be unnormalized [37]. From normalized individual IVBDs, a 

pair of optimization problems is constructed by using the ER rule to generate the aggregated IVBD B(al). 

 
In the pair of optimization problems, *, () n i l a  and *, () il a   represent decision variables, which form 

belief distributions limited to IVBDs. When the objective of the pair of optimization problems is changed to βΩ(al) 

can be obtained. From the aggregated IVBD and the utilities of grades u(Hn) (n = 1, …, N), the following 

optimization model is constructed to determine the minimum and maximum expected utilities u-(al) and u+(al). 

 
Solving this model, *() represent decision variables, generates the optimal u-(al). When the objective of this 

model is changed to the optimal u+(al) can be obtained. If the aggregated IVBD is not required to analyze the 

decision problem under consideration, the optimization model shown in Eqs. (18)-(21) can be modified as the 

following one to determine u-(al) and u+(al).  

 
 

3. Four Evolutionary Algorithms for MCDM with IVBDs 
The combination of individual belief distributions by using the ER rule to generate the aggregated belief 

distribution B(al) = {(Hn, βn(al)), n = 1, …, N; (Ω, βΩ(al))} is implicitly involved in this optimization model. 

Similarly, the optimal u-(al) can be obtained from solving this model and the optimal u+(al) from solving the model 

with the objective.  

When the number of criteria L and the number of grades N are large, solving the optimization problems shown 

in Eqs. (14)-(17) and (22)-(25) will become difficult. Evolutionary algorithms are helpful to find solutions to the 

optimization problems with large L and N. A key issue is to find the evolutionary algorithm with higher accuracy 

and efficiency performances among feasible algorithms. To address this issue, four evolutionary algorithms, namely 

GA, DE algorithm, PSO algorithm, and GSA, are adopted to make a comparison. The reason why the four 

evolutionary algorithms are selected is that many extensions of them are developed to handle real problems in 

different fields. For GA, its chromosome coding [39, 40] and structure [41] are improved, and it is used to conduct 

combinational dispatching decision [42], ischemic beat classification [43], and the generation of trading strategies 

for stock markets [44]. As to DE algorithm, its neighborhood-based mutation operator [45], dynamic parameter 

selection [46], self-adapting control parameters [47], and hybrid cross-generation mutation operation [48] are 

developed, and it is used to solve permutation flow shop scheduling problem [49] and periodic railway timetable 

scheduling problem [50]. With respect to PSO algorithm, its stability [51] and impacts of coefficients on movement 

patterns [52] are analyzed, and it is used to conduct cancer classification [53] and population classification in fire 

evacuation [54], and model the gene regulatory networks [55]. Concerning about GSA, its nearest neighbor scheme 

[56] is developed, and it is used to conduct feature selection for face recognition [57], unit commitment in power 

system operation [58], and parameter identification of water turbine regulation system [59]. In  
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3.1. Process of GA for Combining Individual IVBDs the GA Process for Combining 
Individual IVBDs is Presented as Follows 

Step 1: Initialization.  

For the pair of optimization problems in Eqs. (14)-(17). 

Randomly generating NG chromosomes completes the initialization of the GA process. Assume that the 

maximum number of iterations is Nt. The crossover probability threshold C_GA and the mutation probability 

threshold M_GA are set as 0.6 and 0.1, respectively.  

Step 2: Performance evaluation.  

When the lower bound of βn(al) is optimized, the fitness value of the chromosome ,it is set as , () jt l Fa = -

βn(al) to optimize the upper bound of βn(al). As indicated in Section 2.1, βn(al) is limited to [0, 1] 

Step 3: Selection.  

The selection probability of the chromosome. 

Step 4: Crossover.  

After selection, two chromosomes, the two chromosomes are randomly selected to perform crossover operation.  

Given a random indicator of crossover C_I, if C_I > C_GA, crossover operation continues; otherwise, it ends. 

When C_I > C_GA, given a random crossover coefficient γt(al). 

Step 5: Mutation.  

After selection and crossover operations, a chromosome , Ca and one belief distribution of the chromosome are 

randomly selected to perform mutation operation. Given a random indicator of mutation M_I, if M_I > M_GA, 

crossover operation continues; otherwise, it ends. When M_I > M_GA, given a random mutation probability ηt(al), 

when ηt(al) > 0.5, belief degree are mutated to be increased. 

Step 6: Update. After the selection, crossover, and mutation operations are performed, the fitness values of all 

chromosomes are recalculated to update the best objective with the corresponding solution. Step 7: Termination. If 

Nt iterations are completed, the best objective with the corresponding solution is obtained as the lower bound or 

upper bound of βn(al). Otherwise, go to Step 3.  

  

4. Conclusion Remarks 
Comparison for generating expected utilities When the aggregated IVBDs of alternatives are not wished to be 

obtained, the optimal expected utilities of alternatives are required to generate a solution to a MCDM problem with 

the aid of a decision rule. In this situation, we compare the accuracy and efficiency performances of the four 

evolutionary algorithms for generating the optimal expected utilities by using specified and general IVBDs.  
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