Sumerianz Journal of Scientific Research, 2021, Vol. 4, No. 1, pp. 8-24 ISSN(e): 2617-6955, ISSN(p): 2617-765X Website: <u>https://www.sumerianz.com</u> DOI: <u>https://doi.org/10.47752/sjsr.41.8.24</u> © Sumerianz Publication © © CC BY: Creative Commons Attribution License 4.0

Original Article

Open Access

Sustainable Energy: Challenges of Implementing New Technologies

Abdeen Mustafa Omer

Associate Professor, at Energy Research Institute (ERI), Nottingham, NG7 4EU, UK Email: abdeenomer2@yahoo.co.uk

Article History

Received: January 5, 2021 Revised: February 10, 2021 Accepted: February 15, 2021 Published: February 18, 2021

Abstract

Sudan is an agricultural country with fertile land, plenty of water resources, livestock, forestry resources, and agricultural residues. Energy is one of the key factors for the development of national economies in Sudan. An overview of the energy situation in Sudan is introduced with reference to the end uses and regional distribution. Energy sources are divided into two main types; conventional energy (biomass, petroleum products, and electricity); and non-conventional energy (solar, wind, hydro, etc.). Sudan possesses a relatively high abundance of sunshine, solar radiation, and moderate wind speeds, hydro, and biomass energy resources. Application of new and renewable sources of energy available in Sudan is now a major issue in the future energy strategic planning for the alternative to the fossil conventional energy to provide part of the local energy demand. Sudan is an important case study in the context of renewable energy. It has a long history of meeting its energy needs through renewables. Sudan's renewables portfolio is broad and diverse, due in part to the country's wide range of climates and landscapes. Like many of the African leaders in renewable energy utilisation, Sudan has a well-defined commitment to continue research, development, and implementation of new technologies. Sustainable low-carbon energy scenarios for the new century emphasise the untapped potential of renewable resources. Rural areas of Sudan can benefit from this transition. The increased availability of reliable and efficient energy services stimulates new development alternatives. It is concluded that renewable environmentally friendly energy must be encouraged, promoted, implemented, and demonstrated by full-scale plant especially for use in remote rural areas.

Keywords: Sudan; Energy; Consumption patterns; Renewable energy potential; Sustainable development; Impacts on environment; mitigations.

1. Introduction

Sudan is the largest country in African continent, with a tropical climate, and an area of approximately 10^6 square miles (2.5 x 10^6 km²). It lies between latitudes 3° 'N and 23° 'N; and longitudes 21° 45' 'E and 39° 'E. This large area enjoys a variety of climates, from desert regions in the north, to tropical in the south, and makes it a favourable environment for all activities of integrated agricultural investment from production to processing industries [1]. Sudan is a relatively sparsely populated country. The total population according to the census 1996 was 30×10^6 inhabitants. The annual growth rate is 2.8%, and population density is 12 persons per square kilometre [1]. Sudan is rich in land and water resources [2]. Sudan has a predominately continental climate, which roughly divides, into three climatological regions:

Region 1 is situated north of latitude 19°'N. The summers are invariably hot (mean max. 41°C and mean min. 25°C) with large variation; low relative humidity averages (25%). Winters can be quite cool. Sunshine is very prevalent. Dust storms occur in summer. The climate is a typical desert climate where rain is infrequent and annual rainfall of 75-300 mm. The annual variation in temperature is large (max. and min. pattern corresponding to winter and summer). The fluctuations are due to the dry and rainy seasons.

Region 2 is situated south of latitude 19°'N. The climate is a typical tropical continental climate.

Region 3 comprises the areas along the Red Sea coast and eastern slopes of the Red Sea hills. The climate is basically as in region 1, but is affected by the maritime influence of the Red Sea.

Two main air movements determine the general nature of the climate. Firstly, a very dry air movement from the north that prevails throughout the year, but lacks uniformity; and secondly, a major flow of maritime origin that enters Sudan from the south carrying moisture and bringing rain. The extent of penetration into the country by airflow from the south determines the annual rainfall and its monthly distribution. The average monthly rainfall for Sudan indicates the decreasing trend in the rainfall, as well as in the duration as one moves generally from the south towards the north and from east towards west. The total size of the land of Sudan is 6×10^8 Feddans (Feddan = 1.038 acres = 0.42 hectares). The land use in the country is classified into four main categories. There are arable land (8.4 x 10^6 hectares), pasture (29.94 x 10^6 hectares), forest (108.3 x 10^6 hectares), and about 38.22 x 10^6 hectares used for other purposes. Water resources are estimated at 84 x 10^9 cubic meters (m³), this including the river Nile and its

tributaries. Underground water is estimated at 26 x 10^{10} cubic meters, only 1% of this amount is currently being utilised. The annual average rainfall ranges from about 1 mm in the northern desert to about 1600 mm in the equatorial region. The total annual rainfall estimated at 1093.2 x 10^9 m³.

Sudan's economy remains essentially agricultural, with annual agricultural production, estimated as 15×10^6 tonnes mainly sugar, wheat, sorghum, cotton, millet, groundnut, sesame, tobacco, and fruits [2]. Sudan is also viewed as one of the potentially richest nations in livestock [2], approximately 103×10^6 head (70 x 10^6 sheep and goats, 30×10^6 cattle, and 3×10^6 camels) [3]. Sudan has a great wealth of the wild life- birds, reptiles, and fishes. Sudan possesses great potentialities for industrialisation since it is rich in agricultural raw materials resources. Since the government realised the importance of industrialisation for economic development, there were many attempts by the state to improve the performance of this sector through different industrial policies. Energy is an essential factor in the development movement, since it stimulates and supports the economic growth, and development. The energy crisis in mid seventies, and substantial increase in oil prices that followed, has put a heavy financial burden on the less developed countries (LDC's). Sudan is not exception. The fossil fuels, especially oil and natural gas, are finite in extent, and should be regarded as depleting assets, and since that time the efforts are oriented to search for new sources of energy. Most of the political and resources are directed to establish sources of energy, many of which now face serious environmental and other constraints, rather than the biomass sources which are increasingly being regarded as a central parts of long solutions to the energy environment dilemma. However, increasing energy service levels with the same environmental goals would imply stronger exploitation of biomass energy sources and stronger measures for exploiting the potential of energy conservation. In recent years, Sudan has increased efforts to exploit renewable energy sources and reduce its dependence on oil. Wind, solar and biomass offers a variety of renewable options that are well suited to the African climate. A number of renewable energy initiatives are under way in Sudan that can contribute to rural development while also addressing climate mitigation.

2. Energy Situation

Tables 1, 2, 3, 4, 5, 6, 7 show energy profile, consumption, and distribution among different sectors in Sudan. Sudan like most of the oil importing countries suffered a lot from sharp increase of oil prices in the last decades. The oil bill consumes more than 50% of the income earnings. Sudan meets approximately 87% of its energy needs with biomass, while oil supplies 12%, and the remaining 1% is produced from hydro and thermal power. The household sector consumed 60% of the total electricity supplies [4]. The total annual energy consumed is approximately 11 x 10⁹ tonnes of oil, with an estimated 43% lost in the conversion process [5]. The heavy dependence on biomass threatens the health and future of domestic forests, and the large quantities of oil purchased abroad causes Sudan to suffer from serious trade imbalances. Poverty and iniquity in the basic services are the major components that hindered rural development. Unless being addressed now, non-of the great goals of the international and nation community peace, human rights, environment, and sustainable development will be achieved or even progressed. Energy is a vital prime mover to the development whether in urban or rural areas. The rural energy needs are modest compared to urban. A shift to renewables would therefore help to solve some of these problems while also providing the population with higher quality energy, which will in turn, improve living standards and help reduce poverty. For proper rural development the following must be considered:

- Analyse the key potentials and constraints development of rural energy.
- Assess the socio-technical information needs for decision-makers and planners in rural development.
- Utilise number of techniques and models supporting planning rural energy.
- Design, import and interpret different types of surveys to collect relevant information and analyse them to be an input to planners.

Renewable energy technologies such as solar, wind, etc. become more important since there are local resources, and infinite source of energy. Renewable energy needs, especially in rural areas and small communities. Renewable sources of energy are regional and site specific. The renewable strategy is well integrated in the National Energy Plan [6], and clearly spelled out in the National Energy Policy, but this is not enough. It has to be integrated in the regional development plans. The role of renewable is big in solving essential life problems especially in rural areas for people and their resource development like the availing of energy for the medical services for people and animal, provision of water, education, communication and rural small industries [7]. A new renewable fuels program in Sudan aims to improve environmental standards while making better use of domestic resources, providing an economic stimulus to the rural economy, and reducing CO_2 emissions. This article discusses Sudan's current energy system, and describes plans for expanding and improving Sudan's emerging portfolio of renewable energy options. The poor situations of conventional energy supplies to Sudanese people are characterised by high dependence on biomass woody fuels (firewood, and charcoal). More than 70% of the total Sudanese population live in rural and isolated communities characterised by extreme poverty and power social, and economical activity [8]. The unavailability and the acute shortages of the conventional energy supply (petroleum and electricity) to rural people forced them to use alternatives available energy sources like biomass [9]. This situation caused serious environmental degradation beside the poor unsatisfactory services of some basic needs such as:

- Food security
- Water supply
- Health care
- Communications

In order to raise rural living standards, the *per capita* energy availability must be increased, through better utilisation of the local available energy resources (Table. 8). The rural energy requirements are summarised in Table

(9). The suitable energy source, needed for the above rural requirements must be of diffuse low cost types rather than large central installation. Also, those technologies must be appropriate, environmentally, socially and economically acceptable. The urgent problem for rural people development is to increase the energy available *per capita*. Since it is necessary to rise up the present level of extreme poverty and better basic need services.

Sector	Energy	Percent (%)
Residential	4640	77.2%
Transportation	610	10.0%
Industries	340	5.7%
Agricultural	151	2.5%
Others*	277	4.6%
Total	6018	100.0%

 Table-1. Annual energy consumption pattern in Sudan from different energy sources (10⁶ tonnes)

*Others are commercial, services, constructions and Quranic schools.

Due to the present limitations, and sharp shortages or unavailability of both electricity and petroleum products to rural people, some renewable energy technologies based on utilising locally available energy; materials and skills are alternate energy options to rural development [10]. These technologies are not for complete rural electrification (although they can), but they are applied as energies stand alone systems providing energy sources to some rural basic needs. It is necessary that a vigorous program for renewable energies should be set up immediately (the challenge is to provide a framework enabling markets to evolve along a path that favours environmentally sustainable products and transactions).

Table-2. Annual biomass energy sources available in Sudan (10^6 m^3)

Source	Energy
Natural and cultivated forestry	2.9
Agricultural residues	5.2
Animal wastes	1.1
Water hyacinth and aquatic weeds	3.2
Total	13.4

Table-3. Annual biomass energy consumption in Sudan (10⁶ tonnes)

Sector	Energy	Percent of total (%)
Residential	4549	92.0%
Industries	169	3.4%
Others*	209	4.6%
Total	4927	100.0%

*Others are commercial, constructions and Quranic schools.

Table-4. Power output of	present hydropower	plants (109 Wa	atts)
--------------------------	--------------------	----------------	-------

Power
275
15
13
303

Table-5. Annual electricity consumption in Sudan (10 ⁶ tonnes)
--

Sector	Energy	Percent of total (%)
Transportation	3.2	4%
Agricultural	22.4	28%
Industries	6.4	8%
Residential	48.0	60%
Total	80.0	100%

Table-6. Annual petroleum product consumption in Sudan (10⁶ tonnes)

Sector	Energy	Percent of total (%)
Transportation	601	60.0%
Industries	138	13.8%
Agricultural	148	14.8%
Residential	55	5.5%
Others*	60	5.9%
Total	1002	100.0%

*Others are commercial and services.

2.1. Major Energy Consuming Sectors

Sudan is still considered between the 25 most developing African countries. Agriculture is the backbone of economic and social development in Sudan. About 80% of the population depend on agriculture, and all other sectors are largely dependent on it. Agriculture contributes to about 41% of the gross national product (GNP) and 95% of all earnings. Agriculture determines for the last 30 years the degree of performance growth of the national economy.

Table-7. Percentage of the total annual electricity consumption by states			
States	Percent (%)		
Khartoum, Central and East states	85.8%		
Red Sea state	4.5%		
Northern states	4.0%		
Darfur states	3.1%		
Kordofan states	2.3%		
Southern states	0.3%		

Table-8. Energy sources for rural area			
Source	Form		
Solar energy	Solar thermal, Solar PV		
Biomass energy	Woody fuels, Non woody fuels		
Wind energy	Mechanical types, Electrical types		
Mini & micro hydro	A mass water fall, Current flow of		
	water		
Geothermal	Hot water		

Table-9. Energy required in Sudan rural area

Rural energy	Activity		
Domestic	Lighting, heating, cooking, cooling		
Agricultural process	Land preparation, weaving, harvesting,		
	sowing		
Crop process and storage	Drying, grinding, refrigeration		
Small and medium industries	Power machinery		
Water pumping	Domestic use		
Transport	Schools, clinics, communications, radio,		
	televisions, etc.		

3. Agriculture Sector

During the last decades, agriculture contributed by about 41% to the Sudan GNP. This share remained stable till 84/85 when Sudan was seriously hit by drought and desertification, which led to food shortages, deforestation, and also, by socio-economic effects caused the imposed civil war. The result dropped the agriculture share to about 37%. Recent development due rehabilitation and improvement in agricultural sector in 1994 has raised the share to 41%. This share was reflected in providing raw materials to local industries and an increased export earning besides raising percentage of employment among population.

4. Industrial Sector

The industrial sector is mainly suffering from power shortages, which is the prime mover to the large, medium and small industries. The industrial sector was consuming 5.7% of the total energy consumption, distributed as fellows: 13.8% from petroleum products, 3.4% from biomass and 8% from electricity.

5. Domestic Use

Household is the major energy consumer. It consumed 92% of the total biomass consumption in form of firewood and charcoal. From electricity this sector consumed 60% of the total consumption, and 5.5% of petroleum products.

6. Transport Sector

The transportation sector was not being efficient for the last two decades because of serious damage happened to its infrastructure. It consumed 10% of the total energy consumption and utilised 60% of the total petroleum products supplied.

7. Renewable Energy Resources in Sudan

The present position for most people in Sudan for obtaining the needed energy forms (heat, light, etc.) is provided by firewood. Cooking is largely done by wood from forests or its derivative, charcoal. Cattle dung, and agriculture waste being used to lesser extent. Human, animal, and diesel or gasoline engines provide mechanical

power. Some cooking and lighting is done by kerosene. It should be recognised that this situation is unlikely to be charged for the next one or two decades. However, because of the need to increase energy availability and also to find alternatives to the rapidly decreasing wood supplies in many rural areas.

It is necessary that a vigorous program reaching into alternative renewable energies should set up immediately. There should be much more realism in formation of such program, e.g., it is no use providing a solar powered pump at a price competitive with a diesel for some one who can not ever offered a diesel engine. The renewable energy technology systems (RETs) are simple, from local materials, clean energy, reliable and sustainable.

Specialist on their applications carried out socio-economic and environmental studies. The output of the studies pointed out that, they are acceptable to the people and have measured remarkable impacts on the social life, economical activities and rural environment [11, 12].

8. Biomass Resources

Agriculture is the source of a considerable sum of hard currency that is needed for the control of balance of payment in the country's budget, as well as it is the major source of raw materials for local industry. Biomass resources contributed to play a significant role in energy supply in Sudan as in all other developing countries. Biomass resources should be divided into residues or dedicated resources, the latter including firewood and charcoal from forest resources as shown in Table (10).

Table-10. Annual biomass energy consumption pattern in Sudan (10^3 m^3)				
Sector	Firewood	Charcoal	Total	Percent (%)
Residential	6148	6071	12219	88.5%
Industrial	1050	12	1062	7.7%
Commercial	32	284	316	2.3%
Quranic schools	209	0	209	1.5%
Total	7439	6367	13806	
Percent (%)	54%	46%		100.0%

Approximately 13 x 10⁶ m³ of biomass are consumed per year as shown in Table (10). To avoid resource depletion, Sudan is currently undergoing a reforestation program of 1.05×10^6 hectares. Biomass residues are more economically exploitable and more environmentally benign than dedicated biomass resources. There exist a variety of readily available sources in Sudan, including agricultural residues such as sugar cane bagasse, and molasse, cotton stalks, groundnut shells, tree/forest residues, aquatic weeds, and various animal wastes as shown in Table (2).

Direct burning of fuel-wood and crop residues constitute the main usage of Sudan biomass, as is the case with many developing countries. However, the direct burning of biomass in an inefficient manner causes economic loss and adversely affects human health. In order to address the problem of inefficiency, research centre around the country are have investigated the viability of converting the resource to a more useful form, namely solid briquettes and fuel gas. Briquetting is the formation of a char (an energy-dense solid fuel source) from otherwise wasted agricultural and forestry residues. One of the disadvantages of wood fuel is that it is bulky and therefore requires the transportation of large volumes. Briquette formation allows for a more energy-dense fuel to be delivered, thus reducing the transportation cost and making the resource more competitive. It also adds some uniformity, which makes the fuel more compatible with systems that are sensitive to the specific fuel input [13].

Briquetting of agricultural residues in Sudan started since 1980, where small entrepreneur constructed a briquetting plant using groundnut shells in Khartoum. The second plant was introduced in Kordofan (western Sudan), and the plant capacity of 2 tonnes per hour with maximum 2000 tonnes per season. Another, prototype unit was brought, and worked in Nyala with capacity of 0.5 tonnes per hour (i.e., 600 tonnes per season). In central Sudan, a briquetting plant of cotton stalks was installed at Wad El Shafie with capacity of 2 tonnes per hour (i.e., 2000 tonnes per season). The ongoing project in New Halfa is constructed to produce 1200 tonnes per season of bagasse briquettes [14]. A number of factories have been built for carbonisation of agricultural residues, namely cotton stalks. The products are now commercialised. More than 2000 families have been trained to produce their cooking charcoal from the cotton stalks.

In Sudan, most urban households burn charcoal on traditional square "Canun" stove that has very low fuel-toheat conversion efficiencies. The following prototypes were all tried and tested in Sudan:

- The metal clad Kenyan Jiko
- The vermiculite lined traditional Kenyan Jiko •
- The all-ceramic Jiko in square metal box •
- The open draft Dugga stoves •
- The controlled draft Dugga stoves •
- The Umeme Jiko "Canun Al Jadeed"

Local traditional stoves were tested, improved, invested, and commercially used in Sudan [15]:

- Traditional muddy stoves ٠
- Bucket stoves
- Tin stoves

The aim of any modern biomass energy systems must be:

To maximise yields with minimum inputs.

- Utilisation and selection of adequate plant materials and processes.
- Optimum use of land, water, and fertiliser.
- Create an adequate infrastructure and strong R & D base.

Gasification is based on the formation of a fuel gas (mostly CO and H_2) by partially oxidising raw solid fuel at high temperatures in the presence of steam. The technology, initially developed for use with charcoal as fuel input, can also make use of wood chips, groundnut shells, sugar cane bagasse, and other similar fuels to generate capacities from 3 to 100 kW for biomass systems. Three gasifier designs have been developed to make use of the diversity of fuel inputs and to meet the requirements of the product gas output (degree of cleanliness, composition, heating value, etc.).

Another area in which rural energy availability could be secured where woody fuels have become scarce, are the improvements of traditional cookers and ovens to raise the efficiency of fuel saving and also, by planting fast growing trees to provide a constant fuel supply. The rural development is essential and economically important since it will eventually lead to better standards of living, people's settlement, and self sufficient in the following:

- Food and water supplies.
- Better services in education and health care.
- Good communication modes.

Furthermore, Sudan is investigating the potential to make use of more and more of its waste. Household waste, vegetable market waste, and waste from the cotton stalks, leather, and pulp; and paper industries can be used to produce useful energy either by direct incineration, gasification, digestion (biogas production), fermentation, or cogeneration.

Type of residue	Current use / availability
Wood industry waste	No residues available
Vegetable crop residues	Animal feed
Food processing residue	Energy needs
Sorghum, millet, wheat residues	Fodder, and building materials
Groundnut shells	Fodder, brick making, direct fining oil mills
Cotton stalks	Domestic fuel considerable amounts available for short period
Sugar, bagasse, molasses	Fodder, energy need, ethanol production (surplus available)
Manure	Fertiliser, brick making, plastering (Zibala)

Table-11. Biomass	residues, curren	t use and general	l availability

Table-12.	Effective	biomass	resource	utilisation

Subject	Tools	Constraints
Utilization and land clearance for	Stumpage fees	Policy
agriculture expansion	Control	• Fuel-wood
	Extension	planning
	Conversion	 Lack of extension
	Technology	Institutional
Utilization of agricultural residues	Briquetting	Capital
	Carbonisation	Pricing
	Carbonisation and	Policy and
	briquetting	legislation
	• Fermentation	Social acceptability
	Gasification	

Table-13. Agricultural residues routes for development	t
--	---

Source	Process	Product	End use
Agricultural residues	Direct	Combustion	Rural poor
			Urban household
			Industrial use
	Processing	Briquettes	Industrial use
			Limited household use
	Processing	Carbonisation	Rural household (self
		(small scale)	sufficiency)
	Carbonisation	Briquettes	Urban fuel
		Carbonised	
	Fermentation	Biogas	Energy services
			Household
			Industry
Agricultural, and	Direct	Combustion	(save or less efficiency as
animal residues			wood)
	Briquettes	Direct combustion	(similar end use devices or
		Carbonised	improved)

Carbonisation	Briquettes	Use
Carbonisation	Biogas	Briquettes use
Fermentation		

The use of biomass through direct combustion has long been, and still is the most common mode of biomass utilisation as shown in Tables (11, 12, and 13). Examples for dry (thermo-chemical) conversion processes are charcoal making from wood (slow pyrolysis), gasification of forest and agricultural residues (fast pyrolysis), and of course, direct combustion in stoves, furnaces, etc. Wet processes require substantial amount of water to be mixed with the biomass.

9. Hydropower

Hydropower plants are classified by their rated capacity into one of four regimes: micro (< 50 kW); mini (50-500 kW); small (500 kW-5 MW); and large (> 5 MW). The numbers of hydropower plants are given in Table (4), accounting for about 1% of total hydropower available in Sudan.

Hydro potential is promising in Sudan. A number of prospective areas have been identified by surveys and studies carried for exploration of mini-hydropower resources in Sudan. Mini and micro hydro can be utilized or being utilized in Sudan in two ways:

- Using the water falls from 1 m to 100 m; energy can be generated, and small power can be generated up to 100 kW.
- Using the current flow of the Nile water i.e., the speed of the Nile water. The water speed can be used to run the river turbines (current river turbines), and then water can be pumped from the Nile to the riverside farms. There are more than 200 suitable sites for utilization of current river turbines along the Blue Nile and the main Nile [16].

The total potential of mini-hydro shows 67000 MWh for southern region, 3785 MWh in Jebel Marra area, and 44895 MWh in El Gezira and El Managil canals. Small-scale hydro plants (under 5 MW) are more environmentally benign than the large-scale hydro projects that often involve huge dams and permanent restructuring of the landscape. These smaller plants are perfectly suited for some regions of Sudan where there is plenty of rainfall and mountainous or hilly lands cope such as Jebel Marra. Table (7) lists the current distribution of electric power for different states in Sudan (mainly from hydro 55%, and thermal generation 45%).

10. Solar Energy

Sunlight is the driving force behind many of the renewable energy technologies. The worldwide potential for utilising this resource, both directly by means of the solar technologies and indirectly by means of bio-fuels, wind and hydro technologies is vast. The sun is a sphere of intensely hot gaseous matter with a diameter of 1.39×10^6 km and, is on average, a distance of 1.5×10^{18} km from earth [17]. Energy occurring in the sun comes from the thermonuclear reaction; the reaction causes the reduction in solar mass by approximately 4×10^9 kgs⁻¹, and simultaneously releases energy at a rate of 3.85×10^{23} kW. However, only 1.79×10^4 kW of solar energy is received by the earth [18]. Solar energy is an inexhaustible source of energy. The solar constant is defined as the amount of energy, which received at the outer fringe of the earth's atmosphere 1.35 kWm⁻² [19]. The solar radiation before reaches the earth surface affected by many factors i.e., absorption, scattering, and reflection.

Sudan has been considered as one of the best countries for exploiting solar energy. Sunshine duration is ranging from 8.5 to 11 hours per day, with high level of solar radiation regime at an average of 20 to 25 $MJm^{-2} day^{-1}$ on the horizontal surface as shown in Table (14). The annual daily mean global radiation ranges from 3.05 to 7.62 kWhm⁻² day⁻¹. However, Sudan has an average of 7-9 GJm⁻² year⁻¹, equivalent to 436-639 Wm⁻² year⁻¹ [19].

The country strives hard to make use of technologies related to renewable sources in rural areas where it is appropriate and applicable. Sudan already has well-established solar thermal applications. The most promising solar energy technologies are related to thermal systems; industrial solar water heaters in the residential sector and in larger social institutions, such as nurseries, hospitals, and schools. Solar cookers, solar dryers for peanut crops, solar stills, solar driven cold stores to store fruits and vegetables, solar collectors, solar water desalination, solar ovens and solar commercial bakers. Solar photovoltaic system (PV): solar PV for lighting, solar refrigeration to store vaccines for human and animal use, solar PV for water pumping, solar PV for battery chargers, solar PV for communication network, microwave receiver stations, radio systems in airports, VHF and beacon radio systems in airports, and educational solar TV posts in some villages [8].

Table-14. Correlation of solar radiation with other weather parameters in Sudan (Yearly averages)

Station	Mean temp. (°C)	Sunshine duration (h)	Solar radiation (MJm ⁻² day ⁻¹)	Wind velocity (ms ⁻¹)	Relative humidity (%)
Port Sudan	28.4	9.0	20.87	5.1	65
Shambat	29.7	9.9	22.82	4.5	31
Wadi Medani	28.4	9.8	22.84	4.5	40
El Fasher	25.8	9.6	22.80	3.4	33
Abu Na'ama	28.2	8.8	21.90	3.1	46
Ghazala Gawazat	27.2	9.3	21.72	3.0	43

(1)

Companiana 1		of Coi		Decem	1.
Sumerianz J	ournai	oj scu	enujic	<i>Researc</i>	n

Station	Mean temp. (°C)	Sunshine duration (h)	Solar radiation (MJm ⁻² day ⁻¹)	Wind velocity (ms ⁻¹)	Relative humidity (%)
Malakal	27.9	7.8	19.90	2.8	54
Juba	27.6	7.8	19.59	1.5	66
Dongola	27.2	10.5	24.06	4.6	27
Toker	28.8	7.3	17.60	4.1	53
Hudeiba	29.3	10.0	22.37	4.0	25
Aroma	29.1	9.6	21.40	4.2	37
El Showak	26.3	9.7	22.90	4.1	39
Zalingei	24.5	8.8	22.98	2.7	39
Babanusa	28.2	8.9	21.73	2.8	48
Kadugli	27.5	8.5	21.30	2.7	48

11. Wind Energy Potential

The use of wind as a source of power has a long history. Wind power has been used in the past for water pumping, corn grinding, and provision for power for small industries. In areas of low population density where implementation of a central power system would be uneconomical, the decentralised utilisation of wind energy can provide a substantial contribution to development [5, 20, 21]. The use of the wind machine is divided into two; one is the use of small-scale wind machines for water pumping or electricity generation, and the other is the use of large-scale wind machines for generating electricity (big wind machines or wind farms). However, the wind machine can be used for pumping water, electricity generation or any other task. A program of wind power for generating electricity as well as for pumping water appears to be attractive for rural development, e.g., lights, radios, televisions. Wind electric generators can be utilised to meet the power requirements of isolated settlements. Wind energy is found to match well with the demand pattern of the loads, high load during the day for illumination. Wind energy has considerable resources in Sudan where the annual average wind speeds exceeds 5 ms⁻¹ in the most parts north latitude 12°'N (at the coastal area along the Red Sea), and along the Nile valley (from Wadi Halfa to Khartoum, and south of Khartoum covering the El Gezira area). While the southern regions have the poorest potential because of the prevailing low wind speeds. Many designs of wind machines have been suggested and built in Sudan as shown in Table (15).

In Sudan, wind energy is today mainly used for water pumping. Wind has not yet been significantly exploited for power generation. Experience in wind energy in Sudan was started since 1950's, where 250 wind pumps from Australian government, had been installed in El Gezira Agricultural Scheme (Southern Cross Wind Pumps). But, gradually disappeared due to a lack of spare parts and maintenance skills combined with stiff competition from relatively cheep diesel pumps. However, the government has recently begun to recognize the need to reintroduce wind pump technology to reduce the country's dependence on foreign oil. This increases economic security, given high and/or fluctuating oil prices, and it helps to reduce the trade deficit. Using wind power also allows for pumping in rural areas where transportation of oil might be difficult.

In the last 15 years the Energy Research Institute (ERI) installed 15 Consultancy Services Wind Energy Developing Countries (CWD 5000 mm diameter) wind pumps around Khartoum area, Northern state, and Eastern state. Now ERI with cooperation of Sudanese Agricultural Bank (SAB) introduced 60 wind pumps to be use for water pumping in agricultural schemes, but not yet manufactured due to lack of financial support.

Location	No. of pumps
Tuti island	2
Jebel Awlia	1
Soba	4
Shambat	4 (one was locally manufactured)
Toker (eastern Sudan)	2 (both locally manufactured)
Karima (northern Sudan)	2 (both locally manufactured)
Total	15

Table-15. Number of wind put	nps installed for irrigation	purpose in Sudan
------------------------------	------------------------------	------------------

The maximum extractable monthly mean wind power per unit cross sectional area, P, is given by:

$$P = 0.3409 V^3$$

Where:

P is the wind power Wm^{-2} ; and V is the average wind speed ms^{-1} .

The amount of power extracted from the wind depends generally on the design of the wind rotor.

In practice the wind machine power will be lost by the aerodynamic affects of the rotor. An important problem with wind pump system is matching between the power of the rotor, and that of the pump. In general the wind pump systems consist of the following items:

• The wind rotor

- Transmission
- The pump

The overall efficiency of the system is given by the multiplication of the rotor efficiency, transmission efficiency, and the pump efficiency.

$$\eta_{\text{Overall}} = \eta_{\text{rotor}} x \eta_{\text{transmission}} x \eta_{\text{pump}}$$
⁽²⁾

For wind pumps though efficiency is important, a more suitable definition is the number of gallons of water pumped per day per dollar.

A sizing of wind pump for drinking and irrigation purposes usually requires an estimation of hourly, daily, weekly, and monthly average output. The method for making such estimation is combining data on the wind pump at various hourly average wind speeds with data from a wind velocity distribution histogram (or numerical information on the number of hours in the month that wind blows within predefined speed). The result is given in Table (16), which gives the expected output of wind pump in various wind speeds, and the statistical average number of hours that the wind blows within each speed range.

Generally it is concluded that wind pump system have a potential to fulfil water lifting needs, both in Khartoum area and even in remote rural areas, both for irrigated agriculture and water supply for man and livestock. This conclusion is based on:

- Studies of several agencies dealing with the feasibility of wind pumps.
- The history of water pumping in the Gezira region for drinking purposes.
- The national policy of Sudan vis a vis wind energy.

Sudan is rich in wind; mean wind speed of 4.5 ms^{-1} are available over 50% of Sudan, which is well suited for water lifting and intermittent power requirements, while there is one region in the eastern part of Sudan that has a wind speed of 6 ms⁻¹ which is suitable for power production. In areas where there is wind energy potential but no connection to the electric grid the challenge is simplicity of design, and higher efficiency [22]. Because of this potential for fulfilment of rural water pumping needs, it is recommended to continue the development of wind pumping in Sudan.

Wind speeds (ms ⁻¹)	Annual duration (h)	Output rate (m ³ h ⁻¹)
3.0	600	0.3
3.5	500	1.4
4.0	500	2.3
4.5	400	3.0
5.0 5.5	500	3.7
5.5	450	4.3
6.0	450	4.7
6.5	300	5.2
7.0	300	5.7

Table-16. Wind speeds versus wind pump discharges

The most obvious region to start with seems to be the northern regions because of a combination of:

- Favourable wind regime
- Shallow ground water level 5-10 meters depth
- Existing institutional infrastructures

The research and development in the field of wind machines should be directed towards utilising local skills and local available materials. Local production of wind machines should be encouraged in both public and private organisations.

12. Biogas

Presently, Sudan uses a significant amount of kerosene, diesel, firewood, and charcoal for cooking in many rural areas. Biogas technology was introduced to Sudan in mid seventies when GTZ designed a unit as a side-work of a project for water hyacinth control in central Sudan. Anaerobic digesters producing biogas (methane) offer a sustainable alternative fuel for cooking that is appropriate and economic in rural areas. In Sudan, there are currently over 200 installed biogas units, covering a wide range of scales appropriate to family, community, or industrial uses. The agricultural residues and animal wastes are the main sources of feedstock for larger scale biogas plants.

There are in practice two main types of biogas plant that have been developed in Sudan; the fixed dome digester, which is commonly called the Chinese digester (120 units each with volumes 7-15 m³). The other type is with floating gasholder known as Indian digester (80 units each with volumes $5-10 \text{ m}^3$). The solid waste from biogas plants adds economic value by providing valuable fertilizer as by products.

Biogas technology can not only provide fuel, but also important for comprehensive utilization of biomass forestry, animal husbandry, fishery, evolutions the agricultural economy, protecting the environment, realizing agricultural recycling, as well as improving the sanitary conditions, in rural areas. The introduction of biogas technology on wide scale has implications for macro planning such as the allocation of government investment and effects on the balance of payments. Factors that determine the rate of acceptance of biogas plants, such as credit

facilities and technical backup services, are likely to have to be planned as part of general macro-policy, as do the allocation of research and development funds [13].

13. Sugar Cane Biomass

Residuals from the sugar cane industry represent by far the most important source of current and potential biomass resources in Sudan. The sugar industry in Sudan goes back fifty years and Sudan has been one of the world's leading sugar producers. Sugar cane plantations cover one-fifth of the arable land in Sudan. In addition, to raw sugar, Sudan enterprises produce and utilize many valuable cane co-products for feed, food, energy and fibre. At present, there are 5 sugar factories as illustrated in Table (17).

Factory	Design capacity	Yearly bagasse	
Kenana	300	266	
El Genaid	60	53	
New Halfa	75	65	
Sennar	100	58	
Asalaia	100	60	
Total	635	502	

Table-17. Annual sugarcane bagasse available in Sudan (10^3 tonnes)

Sugar cane bagasse and sugar cane trash already provide a significant amount of biomass for electricity production, but the potential is much higher with advanced cogeneration technologies. Most sugar factories in Sudan, as elsewhere in the developing world, can produce about 15-30 kWh per tonne of cane. If all factories were fitted with biomass gasifier-combined cycle systems, 400-800 kWh of electricity could be produced per tonne of cane, enough to satisfy all of Sudan's current electricity demand.

In Sudan there are no alcohol distilleries since 1983. The three factories were disappeared with Islamic Laws. The current circumstances suggest that Sudan should consider expanding production for use as transportation fuel, but this option has not yet been pursued. The alcohol is used for a variety of applications, mainly for medical purposes and rum production. Blending with gasoline would also have direct environmental advantages by substituting for lead as an octane enhancer.

14. Geothermal Energy

In Sudan [16] geothermal resources have identified, and the following sites are expected to have a significant potential:

- Volcanic Jebel Marra area. •
- The Red Sea littoral (Suwakin area).
- Volcanic territories. •
- Some other remote areas.

Scientific studies are needed on the above sites for the geothermal energy availability, and then the economic and social visibility studies can be done.

15. Achievements

In 1991, Sudan created the Ministry of Higher Education and Scientific Research (MHESR) to take responsibility for all matters relating to non-conventional/renewable energy. It undertakes the role of renewable energy policymaking, planning, promotion, and coordination. In recent years Energy Research Institute (ERI)-National Centre for Research (NCR)-MHESR has overseen the development of a broad base of technologies including biogas plants, solar thermal and PV systems, wind turbines, small and micro hydropower units, energy from urban and industrial wastes, and even improved cooking stoves. Table (18) summarises the potential and the current status of renewable energy development in Sudan.

Under the present federal system, Sudan is divided into 26 federal states. This made regional development planning a more important tool for the utilization of natural resources particularly planning for the utilization of renewable energy sources. The role of renewable energy is big in solving essential live problems especially in rural areas for people and their resource development like the availing of energy for the medical services for people and animal, provision of water, education, communication and rural small industries. Consequently the energy plan includes:

Table-18. Renewable energy achievements in Sudan				
Source/system	Status (units as of July 2000)			
Industrial solar heaters $(16 \text{ m}^2-80 \text{ m}^2)$	150			
Solar cookers	2000			
Solar stills $(1 \text{ m}^2 - 10 \text{ m}^2)$	100			
Solar dryers	10			
PV solar refrigerators (120 W-250 W)	200			
PV communication systems	30			

Table 19 Denoviable anonav

PV solar water pumps (1.5 kW-5.5 kW)	120
PV solar lighting systems (40 W-1.5 kW)	1000
Wind pumps (diameters 2.4 m-7.4 m)	25
Wind generators (research facilities)	4
Biomass gasifiers	3
Improved stoves	25000
Briquetting plants (600-2000 tonnes per season)	5
Biogas plants	200
Current driven turbines	10

- Installation of 200 solar pumps in the rural areas every year to achieve self-satisfaction of drinking water in areas suitable for solar applications.
- Utilization of solar energy in the telecommunications to cover by the end of the plan all existing airports, and the railway stations, the remote hospitals and microwave stations through the installation of 300 units.
- Lighting of rural areas at a level of 2 MW every year starting with 50 kW (8 MW for 10 years of the program).
- Popularise the use of solar refrigerators by the installation of 300 units per year for vaccines and medicines preservation for human beings and animals.
- Supply distilled water by producing 1000 m³ of distilled water every year.
- Solar water heating in hotels, hospitals, and relevant industries through the installation of 500 units every year.
- Disseminate the use of solar cookers in the northern states for household use through the production of 1000 units every year.
- Production of 60 wind pumps for Sudan rural areas.
- Production of 200 current driven pumps per year.
- Installation of 50 biogas units per year.
- Support research and development for:
- 1. Biomass gasifiers (stand-alone)
- 2. Biomass combustion/gasifier
- 3. Bagasse based cogeneration
- 4. Ethanol production from sugar cane
- 5. Floating pumps
- 6. Wind generators
- 7. Solar collectors
- 8. Solar dryers

16. Privatisation and Price Liberalisation in Energy Source Supplies

The strategy of price liberalisation and privatisation in some products of agriculture, industry, and energy sectors implemented over the last two years, and has some extent (a positive result) on government deficit and restriction of imports. The investment law approved recently has a cleaner statement and rules on the above strategy in particular to agriculture and industry areas. In case of the agriculture the strategy was encouraging and area wise was increased (irrigated or rained), and hence the agricultural increased.

The privatisation, and price liberalisation in energy fields has to some secured (but not fully). Availability and adequate energy supplies to the major productive sectors. The result is that, the present situation of energy supplies is for better than ten years ago. The investment law has also encourage the participation of the investors from the national level as well as from the international friendly and sisters' countries to invest in energy sources supply such as:

- Petroleum products (import in particular) in the northern states.
- Electricity generation (in some states) through providing large diesel engine units.

The readily implementation of electricity price liberalization has some extent release the National Electricity Corporation (NEC) from the heavy dependency of government subsidies, and a noticeable improved of NEC management, and electricity supplies are achieved.

17. Environment Aspects

Environmental pollution is a major problem facing all nations of the world. People have caused air pollution since they learned to how to use fire, but man-made air pollution anthropogenic air pollution) has rapidly increased since industrialisation began. Many volatile organic compounds and trace metals are emitted into the atmosphere by human activities. The pollutants emitted into the atmosphere do not remain confined to the area near the source of emission or to the local environment, and can be transported over long distances, and create regional and global environmental problems.

A great challenge facing the global community today is to make the industrial economy more like the biosphere, that is, to make it a more closed system. This would save energy, reduce waste and pollution, and reduce costs. In short, it would enhance sustainability. Often, it is technically feasible to recycle waste in one of several different ways. For some wastes there are powerful arguments for incineration with energy recovery, rather than material

recycling. Cleaner production approach and pollution control measures are needed in the recycling sector as much as in another. The industrial sector world widely is responsible for about one third of anthropogenic emissions of carbon dioxide, the most important greenhouse gas [23]. Industry is also an important emitter of several other greenhouse gases. And many of industry's products emit greenhouse gases as well, either during use or after they become waste. Opportunities exist for substantial reducing industrial emissions through more efficient production and use of energy. Fuel substitutions, the use of alternative energy technologies, process modification, and by revising materials strategies to make use of less energy and greenhouse gas intensive materials. Industry has an additional role to play through the design of products that use less energy and materials and produce lower greenhouse gas emissions.

Emissions	10 ⁶ tonnes
Liquid	3320
Gas	0
Gas flaring	0
Cement manufacturing	84
Total	3404
Per capita CO ₂ emissions	0.15

Table-19. Annual amount of emissions from industrial processes in Sudan (10⁶ tonnes)

From the Tables (19 and 20) it is noticed that most of CO_2 emissions in Sudan were from land-use change, representing 92% of emissions. On the other hand the emissions of CO_2 from industrial represent only 8%, which is mainly from burning liquid and gas petroleum products. The *per capita* CO_2 emission in Sudan was estimated at 0.15 x 10³ tonnes, which is considered very low compared to average of Africa which is 1.03 x 10³ tonnes *per capita* CO_2 (world *per capita* is 4.21 x 10³ tonnes) [23]. Gas flaring is the practice of burning off gas released in the process of petroleum extraction and processing, and the CO_2 emissions from it all negligible. Nevertheless, and due to increasing momentum in oil industry and oil products, and the future increase in petroleum products consumption in Sudan. It is expected in the coming decades that the emissions of greenhouse gases from oil industry and use will certainly exceed by large figure if certain measures of mitigation are not under taken.

CO ₂ emission from land use change	CH ₄ from anthropogenic sources			Chlorofluorocarbons	
	Solid waste	Oil & gas production	Agriculture	Livestock	
3800	47	N.A.	1	1100	N.A.

Table-20. Annual greenhouse gas emissions from different sources in Sudan (10⁶ tonnes)

18. Environmental Policies and Industrial Competitives

The industrial development strategy in Sudan gives priority to the rehabilitation of the major industrial areas with respect to improvement of infrastructure such as roads, water supply, power supply, sewer systems and other factors. This strategy also takes into consideration the importance of incorporating the environmental dimension into economic development plans. However, the relationship between environmental policies and industrial competitiveness has not been adequately examined. For the near future, the real issue concerns the effectiveness of environmental expenditures in terms of reduction of pollution emissions per unit of output. A number of issues relevant to this central concern are presented as follows:

(1) Implementing ecologically sustainable industrial development strategies:

Agenda 21 for achieving sustainable development in the 21st century calls on governments to adopt National Strategies (NS) for sustainable development that "build on and harmonise the various sectoral, social and environmental policies that are operating in the country" [24]. NS focuses almost exclusively on development issues and does not integrate industrial and environmental concerns. It does not consider industrial specific environmental objectives or time frames for achieving them. Moreover, it does not specify how specific industrial subsectors and plants will meet environmental objectives. Finally, it is formulated with minimal involvement of industrial institutions and private sector associations. To bring together industrial development and environmental objectives it is necessary to:

- Establish environmental goals and action plans for the industrial sector.
- Develop an appropriate mix of policy instruments that support the goals of those plans.
- Design appropriate monitoring and enforcement measurements to realise those goals.
- (2) Applying cleaner production processes and techniques:

Traditional approaches to pollution reduction have been based on the application of end of pipe technologies in order to meet discharge standards. However, the growing recognition that reduction at source is a potentially more cost effective method of abatement is resulting in replacing end of pipe technologies with cleaner production processes. Major constraints in adopting cleaner production methods relate to:

Lack of awareness about the environmental and financial benefits of cleaner production activities.

- Lack of information about techniques and technologies.
- Inadequate financial resources to purchase imported technologies.

A coordinated effect by industry, government and international organisations can go a long way in overcoming these constraints. In this context key questions that need to be addressed are as follows:

- (a) Need for local capacity building, information dissemination, training and education.
- (b) Need for subsectoral demonstration projects.
- (c) Need for increased cooperation with environmental market sectors in developed countries.
- (d) Need for life cycle analysis and research on environmentally compatible products.
- (3) Implementing environmental management systems:

Environmental management systems (EMSs) are necessary to enable plant to achieve and demonstrate sound environmental performance by controlling the environmental impact of their activities, products and services. The basic tools to ensure compliance with national and/or international requirements and continually improve its environmental performance include:

- Environmental auditing.
- Environmental reporting, and
- Environmental impact assessments.

In addition, the adoption of EMS may require extensive training of corporate staff. A practical and effective means of doing this is through the design and support of joint capacity strengthening programs by industry association and bilateral and multilateral agencies.

(4) Managing and conserving water resources:

It is estimated that by year 2025, there will be a global crisis in water resources. Accelerated growth of industry will lead to increase in industrial water use. Moreover, major industrial water pollutant load is expected to increase considerably in the near future. Therefore, to better manage water resources by industry, there is a real need for integrating demand trend and use patterns. The main elements of an industrial management strategy can be identified as follows:

- Analytical services.
- Promotional services.
- Services for the development of industry and water supply infrastructure.
- (5) Using market based instruments (MBIs) to internalise environmental costs:

As complements to command and control measures for resource conservation and pollution prevention in industry. MBIs represent a useful and efficient cost effective policy measures that internalise environmental costs. A plant's decision to invest in clean production depends primarily on the following factors:

- (a) Relative costs of pollution control in overall production costs.
- (b) Price elasticities of supply and demand for intermediary and final goods, and
- (c) Competitive position of plant in a particular industrial sector.
- (6) Counteracting threats from eco-labelling requirements:

The increasing export orientation of production makes it necessary to maintain competitive position in world markets. The emergence of a wide variety of eco-labelling requirements and lack of timely information on multitude of scheme may adversely affect certain export sectors. Needed initiatives to counteracting perceived threats could be presented as follows:

- Information dissemination.
- Life cycle analysis.
- Establishing certification centres.
- Infrastructure support.
- (7) Implementing the United Nations (UN) framework convention on climate change:

The UN climate change convention entered into force on 21st March 1994. The convention objective is the stabilisation of greenhouse gas concentration in the atmosphere at safe levels. For industry, responding to this convention will undoubtedly be a major challenge. Industry will be directly affected. Sudan as party to this convention is obliged to take a number of actions and cooperates effectively in order to meet this challenge. Sudan has to contribute to the common goal of reducing greenhouse gases emissions by taking precautionary measures to mitigate causes and anticipate impacts of climate change. However, there may not be adequate means to do so, and Sudan will therefore require international assistance. The main requirements are:

- Access to best energy-efficient technologies available on the world market, where such technologies are relevant to our natural resources endowments, our industrial requirements and are cost effective.
- Building an energy-efficient capital stock by accelerating the development of low energy intensity processes and equipment.
- Strengthening national capabilities for energy-efficient design and manufacturing.

Areas where technical expertise to implement the convention is necessary include:

- Preparing national communications on greenhouse gas emissions. The communications are supported to contain an assessment of the magnitudes and sources of greenhouse gases as well as identification of reduction methods.
- Supporting technology transfer for improvement in the efficiency of fuel based power generation.
- Promotion technology transfer for the use of renewable sources of energy such as biomass, wind, solar, hydro, etc.

- Developing and implementing technology transfer for energy efficiency programs in industry, in complementarities with cleaner production/pollution prevention measures.
- Analysing the impact of climate change response measures on the economic and industrial development of the country, with the view to identifying economically viable technology options for reducing greenhouse gas emissions from the production and consumption of energy.
- (8) Addressing concerns of small and medium scale industry (SMI):

Small and medium scale enterprises not only contribute to productivity growth and employment but are also important as collective sources of localised pollution loading such as organic wastes in water effluent, as well as hazardous wastes, heavy metal sludge, solvents, waste oils, acidic and alkaline wastes, photo wastes, etc. Often, these wastes are disposed of in unsafe manure and are extremely difficult to monitor. The cost of control in relation to output is too high, so even a modest increase in the costs (of environmental regulations) may threaten prevention and control may be well known and easily available, there is no guarantee that they will be adopted. Moreover, even when policy measures are in place, their enforcement and monitoring is a real problem for SMI sector on account of their large numbers and diversity. It is clear that environment problems of SMIs require special attention and special measures to address their particular problems.

19. Petroleum Industry Pollution and Greenhouse Gases Emissions in Sudan

The activities of oil exploration in Sudan began in late 1950s in the coastal areas of Red Sea. The results of exploration indicated that there is considerable amount of natural and liquefied gases in Suwakin and Bashair, and the quantities were estimated between $45-326 \times 10^9$ cubic meters. According to the increasing oil industry activities in Sudan such as production, refining and export/consumption, and if we consider the entire fuel cycle, namely: exploration, extraction, preparation/transformation, transportation, storage, pollution, including the increase in greenhouse gases, as result of petroleum industry will be very significant in the forthcoming future. In the year 1997 about 2×10^9 tonnes of petroleum products were burnt in Sudan. This amount will be doubled in the year 2010. There is a shortage of information concerning the area of greenhouse gases recording in Sudan.

20. Climate Change, Global Warming and the Enhanced Greenhouse Effect

Industry's use of fossil fuels has been blamed for our warming climate, when coal, gas and oil are burned, they released harmful gases, which trap heat into atmosphere and cause global warming. However, there has been ongoing debate on this subject, as scientists have struggled to distinguish between changes, which are human induced, and those, which could be put down to natural climate variability. Industrialised countries have the highest emission levels, and must shoulder the greatest responsibility for global warming. But action must also be taken by developing countries to avoid future increases in emission level as their economics develop and population grows. Rising concentrations of greenhouse gases (GHGs) enhance atmospheric absorption of infrared radiation (IR) with the potential to cause global warming and associated climate change. Human activities that emit carbon dioxide (CO₂), the most significant contributor to potential climate change, occur primarily from fossil fuels to produce energy that sustain economics, and powers socio-economic development. Consequently, efforts to control CO_2 emissions could have serious, negative consequences for economic growth, employment, investment, trade and the standard living for individuals everywhere. Scientifically it is difficult to predict the relation between global temperature and greenhouse gas concentrations. The climate system contains many processes that will change if warming occurs. Critical processes include heat transfer by winds and currents, the hydrological cycle involving evaporation, precipitation, runoff and groundwater, and the formation of clouds, snow, and ice, all of which display enormous natural variability. The equipment and infrastructure for energy supply and use are designed with long lifetimes, and the premature turnover of capital stock involves significant costs. Economic benefits occur if capital stock is replaced with more efficient equipment in step with its normal replacement cycle, and if opportunities to reduce future emissions are taken wherever in the world they are least costly, such flexible approaches would also allows society to take account of evolving scientific and technological knowledge, and to gain experience in designing policies to address climate change.

21. Mitigation Measures

Mitigation measures that could be under taken to influence the effect of oil industry and use that may contribute in decreasing greenhouse gases (GHGs) emissions and decelerate the threat of global climate change may include the following:

- Controlling GHGs emissions by improving the efficiency of energy use, changing equipment and operating procedures.
- Controlling GHGs emission detection techniques in oil production, transportation and refining processes in Sudan.
- More efficient use of energy-intensive materials and changes in consumption patterns.
- A shift to low carbon fuels, especially in designing new refineries.
- The development of alternative energy sources (e.g., biomass, solar, wind, hydro-electrical and cogeneration).
- The development of effective environment standards, policies, laws and regulations particularly in the field of oil industry.

• Activating and supporting environmental and pollution control activities within the Ministry of Energy and Mining (MEM) to effectively cope with the evolving oil industry in Sudan.

22. Policy Development

The non-technical issues, which have recently gained attention include:

- Environmental and ecological factors e.g., carbon sequestration, reforestation and revegetation.
- Biomass as CO₂ neutral replacement for fossil fuels.
- Greater recognition of the importance of renewable energy, particularly modern biomass energy carriers, at the policy and planning levels.
- Greater recognition of the difficulties of gathering good and reliable renewable energy data, and efforts to improve it.
- Studies on the detrimental health efforts of renewable energy particularly from traditional energy users.
- Greater awareness of the need to internalise the externality cost of conventional energy carriers to place them on more equal terms with alternative energy sources.

23. The Future

(1) In the most of the developing countries, the governments acknowledge that, renewable energy can resolve many pressing problems. Yet, the matter stops at this level "Acknowledgement". Much more is needed, like laws regulating and encouraging business, tax concessions, both to investors and customers, and most of all, a sustained, coordinated and well-planned official publicity campaign to enlight, inform and educate the public at a large.

(2) To avoid the problems of fuel altogether (uncertain availability and skyrocketing prices), and minimise spare-parts, solar and wind pumps are proposed to replace diesel engines in the predominant irrigation areas.

(3) Local manufacture, whenever possible, is to be emphasised to avail renewable energy devices since limited funds are the main constraints in commercialisation and dissemination of the technology. Low cost devices as well as reliable devices have to be provided.

(4) Embarking on conservation energy and reduction of pollution of environment to be undertaken without delay:

- To save on fossil fuel for premium users/export.
- To accelerate development of new and/or remote lands otherwise deprived of conventional energy sources.
- As a preventive measure against shortage of future energy supply against prospective national energy demand.

(5) Launching of public awareness campaigns among investor's particularly small-scale entrepreneurs and end users of renewable energy technologies to highlight the importance and benefits of renewables.

(6) To direct Sudan resources away from feeding wars and the arms industry towards real development, this will serve the noble ends of peace and progress.

(7) The energy crisis is a national issue and not only a concern of the energy sector, and the country has to learn to live with the crisis for a long period, and develop policies, institutions and manpower for longer term, more effective solutions.

(8) To invest in research and development through the existing specialised bodies e.g., Energy Research Institute (ERI).

(9) To encourage co-operation between nations, a fact this will be much easier in this era of information and the communications revolution.

(10) Government should give incentives to encourage the household sector to use renewable energy technologies instead of conventional energy.

(11) Promotion research and development, demonstration and adaptation of renewable energy resources (solar, wind, biomass, and mini-hydro, etc.) amongst national, regional, and international organisations which seek clean, safe, and abundant energy sources.

(12) Execute joint investments between the private sector and the financing entities to disseminate the renewables with technical support from the research and development entities.

(13) Promotion the general acceptance of renewable energy strategies by supporting comprehensive economic energy analysis taking account of environmental benefit.

(14) Availing of training opportunities to personnel at different levels in donor countries and other developing countries to make use of their wide experience in application and commercialisation of renewable energy technologies.

(15) To encourage the private sector to assemble, install, repair and manufacture renewable energy devices via investment encouragement, more flexible licensing procedures.

24. Recommendations

Recommendations may be classified into three broad categories: policy, institutional and enterprise levels. (1) Policy level action:

At the policy level, the following aspects may be considered:

- Giving priority to pollution prevention rather than pollution control.
- Using market based instrument complements to command and control measures.
- Recognising small and medium scale industry (SMI) as a special case in environmental legislation.

- Adopting proper industrial sitting and relocation policies.
- (2) Institutional level actions:
- Setting up environmental extension services for small and medium scale industry (SMI).
- Creating information dissemination cells.
- Facilitating common waste treatment facilities.
- Promoting outreach from large plants to small and medium scale industry (SMI).

(3) Enterprise level actions:

- Supporting demonstrations of the financial environmental benefits of pollution prevention measures.
- Promoting self-initiated demonstrations at enterprises through the provision of grants to enterprises.

25. Conclusions

Sudan as an agricultural country has a good rational of energy from agricultural residues, forestry resources, and animal wastes. Sudan has an excellent annual mean solar radiation of 5.44 kW h m^{-2} day⁻¹ which could be of strategic important in substituting for oil, electricity, wood and charcoal; in assisting in rural development, and in improving the quality of life in rural areas.

Sudan is rich in wind; about 50% of Sudan's area is suitable for generating electricity (annual average wind speed more than 5 ms⁻¹), and 75% of Sudan's area is suitable for pumping water (annual average wind speed 3-5 ms⁻¹).

Production of bio-fuels such as ethanol from sugar cane, takes advantages of year-round cultivation potential in a tropical country like Sudan. Benefits extend from local to regional to national to global. Local rural economies benefit through new economic opportunities and employment in the agricultural sector. Urban regions benefit through cleaner air and health improvements. The nation benefits through substituting domestic resources for costly imported gasoline. The world benefits from reduced CO_2 emissions.

In a country with a population dense, there are extreme pressures on energy and waste systems, which can stunt the country's economic growth. However, Sudan has recognized the potential to alleviate some of these problems by promoting renewable energy and utilizing its vast and diverse climate, landscape, and resources, and by coupling its solutions for waste disposal with its solutions for energy production. Thus, Sudan may stand at the forefront of the global renewable energy community, and presents an example of how non-conventional energy strategies may be implemented.

Sudan's energy system is in the midst of a transition away from fossil fuels towards a more sustainable energy system based on biomass and other renewable options. Biogas plants offer renewable options that are relatively inexpensive and well suited to rural areas. Hydropower will continue to play a role in smaller-scale energy supply. There is also potential for expanding wind and solar applications in Sudan, particularly in rural areas.

Energy efficiency brings health, productivity, safety, comfort and savings to the homeowner, as well as local and global environmental benefits.

The use of renewable energy resources could play an important role in this context, especially with regard to responsible and sustainable development. It represents an excellent opportunity to offer a higher standard of living to the local people, and will save local and regional resources. Implementation of renewable energy technologies offers a chance for economic improvement by creating a market for producing companies, maintenance and repair services.

References

- [1] Omer, A. M., 1995. "Rainfall patterns in Sudan." NETWAS News, vol. 2, pp. 4-7.
- [2] Omer, A. M., 1998. "Sudan energy background; an overview." *Renewable Energy*, vol. 14, pp. 467-472.
- [3] Omer, A. M., 1999. *Sudan experience in biomass energy*. Khartoum: Sudan.
- [4] Energy Research Institute (ERI), 1987. *Renewable energy resources potential in Sudan*. Khartoum: Sudan.
- [5] Omer, A. M., 1997. "Compilation and evaluation of solar and wind energy resources in Sudan." *Renewable Energy*, vol. 12, pp. 39-69.
- [6] National Energy Administration (NEA), 1985. *The national energy plan 1985-2000*. Khartoum: Sudan.
- [7] Omer, A. M., 1994. "Renewable energy technology applications in the Sudan." In *Proceedings of the 3rd World Renewable Energy Congress. Reading, UK, 11-16 September*.Oxford: Elsevier Science Ltd.
- [8] Omer, A. M., 1996. "Renewable energy potential and future prospect in Sudan." *Agriculture and Development in Arab World*, vol. 3, pp. 4-13.
- [9] Omer, A. M., 1996. "Biogas technology and environment." *Regional Energy News*, vol. 2, pp. 2-5.
- [10] Omer, A. M., 1995. "Solar energy technology applications in the Sudan." In *Proceedings of the 1st Jordanian Mechanical Engineering Conference. Amman, Jordan, 25-28 June*. Amman: Jordanian Mechanical Engineering Association.
- [11] National Energy Administration (NEA), 1983. *Renewable Energy Assessment for the Sudan*. Khartoum: Sudan.
- [12] National Energy Administration (NEA), 1983. A pre-investment study for fuel production from agricultural wastes for power generation and household consumption. Khartoum: Sudan.
- [13] Omer, A. M., 1999. Biomass energy potential and future prospect in Sudan. Khartoum: Sudan.
- [14] National Energy Administration (NEA), 1991. Energy handbook. Khartoum: Sudan.
- [15] Elamin, S. M. E., 1995. *Towards participative approach for the design of appropriate energy technology in Sudan rural settings. M.Sc. Thesis.* Khartoum: Sudan: University of Khartoum (UOK).

- [16] Omer, A. M., 1998. *Renewable energy potential and environmentally appropriate technologies in Sudan*. Khartoum: Sudan.
- [17] Duffie, J. A. and Beckman, W. A., 1980. *Solar engineering of thermal process*. New York: Wiley Interscience.
- [18] Kirtikara, K., 1983. "Solar radiation and measurement." In *Proceedings of Seminar on Solar Energy and Applications*. Bangkok: Thailand.
- [19] Omer, A. M., 1990. Solar atlas for Sudan. P. G. Thesis. Khartoum: Sudan: University of Khartoum (UOK).
- [20] Omer, A. M., 1998. "Horizons of using wind energy and establishing wind stations in Sudan." *Dirasat*, vol. 25, pp. 545-552.
- [21] Omer, A. M., 1993. "Wind speeds and wind power potential in Sudan." In *Proceedings of the 4th Arab International Solar Energy Conference. Amman, Jordan, 20-25 November*. Amman: Renewable Energy Research Centre.
- [22] Joop, V. M., Paul, H., and Omer, A. M., 1987. *Evaluation of sudan wind energy project*. The Netherlands: CWD-ERC.
- [23] World Resource Institute (WRI), 1994. "World resources: A guide to the global environment, people and the environment."
- [24] Omer, A. M., 1998. "Renewable energy resources in Sudan." In *Proceedings of the 5th World Renewable Energy Congress. Florence, Italy, 19-25 September*.Oxford: Elsevier Science Ltd.