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Abstract 

Assessment and impact on the environment of dumpsites investigated between 1990 and 2015 and 2015 to 2020 in 

Yenagoa, Bayelsa State, Nigeria, using Remote Sensing and Geographical Information Systems (GIS) are used to 

evaluate landscape change from Google Earth Historical Imagery (GIS). Historical Google Earth imagery shows an 

increase from 1900 to 2015, and again from 2015 to 2020, due to an increase in built-up areas, which resulted in illegal 

dumpsites in the environment, implying an increase in population due to migration and industrial activities in the area. 

Six soil samples were collected from illegal dumpsites and one from a control location and analysed for heavy metal 

ions. The Fe, Mn, Cr, Cu, Zn, Ni, Cd, and Pb concentrations were determined using the atomic absorption spectrometer. 

All of the illegal dumpsites were discovered to be located along the market area, close to Epie Creek and the pound. 

Furthermore, the pollution load index (PLI) and contamination factor (CF) results show that heavy metal pollution is 

present in the area. As a result, it is recommended that urban growth be tracked in order to plan ahead of time for various 

dumpsite locations, and that site suitability studies for landfill selection sites be made available using GIS and remote 

sensing-based Multi-Criteria Evaluation. Combining remote sensing and GIS, according to the study, could be an 

effective approach to landscape planning and environmental improvement. 

Keywords: GIS and remote sensing; Landscape; Illegal dumpsite; Heavy metal; Google earth. 

 

1. Introduction 
The Yenagoa local government has been undergoing development due to an increase in population and 

structural activities, which in turn create changes on the surface of the earth. These occur because of deforestation, 

disasters, changes in rivers, and urbanization. According to Jabeen, et al. [1], an increase in the population leads to 

an increase in solid waste generation. Liquid and solid waste discharged into lakes, ponds, or rivers will cause 

serious problems due to an increase in the population. Jabeen, et al. [1], also states that water is contaminated by 

human excreta. In contaminated water and soil, there are a large number of bacteria that are harmful to human 

https://orcid.org/0000-0001-5894-4889
https://orcid.org/0000-0002-3315-7069
https://orcid.org/%200000-0002-6562-3300
https://orcid.org/%200000-0003-0660-6743
https://orcid.org/0000-0001-5894-4889
https://orcid.org/0000-0002-3315-7069
https://orcid.org/%200000-0002-6562-3300
https://orcid.org/%200000-0003-0660-6743
https://orcid.org/0000-0001-5894-4889
https://orcid.org/0000-0002-3315-7069
https://orcid.org/%200000-0002-6562-3300
https://orcid.org/%200000-0003-0660-6743
mailto:desmondeteh@gmail.com
mailto:ayoweialvin@gmail.com
mailto:akajiakuflowz@gmail.com
mailto:desmondeteh@gmail.com
https://orcid.org/0000-0001-5894-4889
https://orcid.org/0000-0002-3315-7069
https://orcid.org/%200000-0002-6562-3300
https://orcid.org/%200000-0003-0660-6743
https://orcid.org/0000-0001-5894-4889
https://orcid.org/0000-0002-3315-7069
https://orcid.org/%200000-0002-6562-3300
https://orcid.org/%200000-0003-0660-6743
https://orcid.org/0000-0001-5894-4889
https://orcid.org/0000-0002-3315-7069
https://orcid.org/%200000-0002-6562-3300
https://orcid.org/%200000-0003-0660-6743
https://orcid.org/0000-0001-5894-4889
https://orcid.org/0000-0002-3315-7069
https://orcid.org/%200000-0002-6562-3300
https://orcid.org/%200000-0003-0660-6743
https://orcid.org/0000-0001-5894-4889
https://orcid.org/0000-0002-3315-7069
https://orcid.org/%200000-0002-6562-3300
https://orcid.org/%200000-0003-0660-6743


Sumerianz Journal of Scientific Research 
 

 

21 

health. Due to the increasing number of people, the government is incapable of supplying essential needs to citizens. 

There is a lack of environmental law in the area [2]. Polythene bags and plastic waste are a major source of 

pollution. Heavy metals are widely highlighted as potential risks and occurrences in polluted soils in the literature 

[3]. It is estimated that three-quarters of the people in urban areas defecate in the open. 77% of people are using flush 

latrines and 8% are using pit latrines. According to Kamble [4], urbanization can cause many infectious diseases, 

including overcrowding, unhygienic conditions, and unsafe drinking water, which are major health issues in urban 

areas. Pesticides are used to kill bacteria, pests, and different germs. Chemicals containing pesticides are directly 

polluting the water and affect the quality of the water. If pesticides were excessive in amount or poorly managed, 

then they would be hazardous to the agricultural ecosystem [5]. Only 60% of fertilizers are used on the soil. Other 

chemicals leached into the soil pollute the water. Cyanobacteria thrive in polluted water and excess phosphate runoff 

leads to eutrophication. Therefore, if change detection occurs on the activities of the earth's surface and is done 

timely and accurately, then the link and interaction between natural phenomena and humans may be best analysed 

and understood as a result. Better management and use of resources may be achieved as a result of that. Change 

detection involves the application of multi-temporal datasets to quantitatively analyse the changes in land cover 

classes. Change detection may be done in ancient ways or by applying remote sensing technologies. The traditional 

methods are expensive, time-consuming, and not very accurate, whereas all of these problems do not exist with 

remote sensing technology. Remote sensing (RS) data has been one of the most important data sources for studies of 

landuse spatial and temporal changes. Multi-temporal RS datasets are opportunely processed and elaborated, 

allowing us to map and identify landscape changes, giving an effective effort to sustainable landscape planning and 

management [6]. In particular, utilizing the integration of RS and GIS techniques, it is possible to analyse and 

classify the changing pattern of landuse during a long period and, as a result, understand the changes within the area 

of interest. GIS techniques are efficiently exploited to analyse the effects of various factors on landuse changes; 

those factors include population density, terrain slope, proximity to roads, and surrounding land use. The availability 

of a time-series dataset is essential to understand and monitor the urban expansion process and to characterise and 

locate the evolution trends at a detailed level. In fact, during the last three decades, satellite time series such as 

Landsat images have been exploited in several studies Masek, et al. [7] and Yang and Lo [8]. It is well known that 

the development of urban areas can transform landscapes formed by rural lifestyles into urban ones and bring 

functional changes from a morphological and structural point of view [8]. Moreover, the population outside central 

cities has grown faster than downtown areas in many developed regions, demonstrating a certain tendency for the 

outward expansion of urban areas [9]. According to Google Earth Features [10], it provides access to sub-meter pixel 

resolution data for nearly a quarter of the world's territory and three-quarters of the world's population. High-

resolution Google Earth data can be used to validate datasets previously used for urban extent [11] and land cover. 

While Google Earth has the potential to be more widely used in scientific publications, particularly in LULC 

analyses [12], one significant difficulty is that Google Earth's native analysis functions are limited to point and 

polygon [13]. The objective of this research is to investigate how populations increase and lead to illegal dumpsites, 

how these dumpsites affect human health due to the wrong location of various markets in the area, and finally, to 

understand urban migration patterns in the area using Google Earth historical imagery.   

 

2. Materials and Methods 
2.1. Location and Geology of the Study Area 

The Yenagoa which is the capital city of Bayelsa State and is among the developed city in Nigeria. The area 

under instigation covers a mass land of an area of 410.61 km
2
 and the population estimated to be about 1704,515 by 

the National Population Commission [14]. It is found in the Southern part of Nigeria and with a good road network 

that links to various parts of the State such as LGA like Kolokuma/Opokuma, Sagbama, Southern Ijaw, Ogbia, etc. 

This area lies within longitudes 006
0
 17’30” and 006

0
 21’30” East oand Latitudes 04

0
 55’0” and 04

0
 7’30” North 

within the coastal area of the recent Niger Delta (Figure. 1).  
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Figure-1. Study location map 

 

3. Data Collection 

3.1. Remote Sensing Data Collection 
The historical satellite imagery is access from Google earth in 1990, 2015 and 2020 with the aid of universal 

map downloader.  

 
Table-1. List of Satellite Imagery collected 

Satellite  Date Spatial Resolution (m) Source 

Google Earth Imagery 14/12/1990 3m [15] 

Google Earth Imagery 02/03/2020 3m [15] 

Google Earth Imagery 06/02/2020 3m [15] 

 

3.2. Soil Sampling Data Collection 
A total of seven (7) soil samples were collected using a hand auger, and they are found in various legal and 

illegal dumps across the entire study area in Figure. 1, except that which is taken for control (C1) in Table 3. Soil 

samples were taken from the outer surface at a depth of 0–1 m, with a total of 2–3 kg of soil per sample according to 

the Guide to Sampling Techniques. They are stored in a polyethylene bag for transport and then analysed in the 

laboratory. 

 

3.3. Limitation 
Cloud cover in the Niger Delta region did not allow good access to Goole earth historical imagery from 1995 to 

2010 

 

3.4. Data Analysis 
The following heavy metal ions: Fe, Mn, Cr, Cu, Zn, Ni, Cd, and Pb, were analysed using the atomic absorption 

spectrometer. The samples were digested with acid in the hood and filtered. The samples were then filtered and 

diluted to 100 mL in a 100 mL vial. They were then taken for analysis on the AAS spectrometer. 

 

3.5. Data Processing 
The data was collected in degrees, minutes, and seconds using a portable global positioning system (GPS) and 

imported into Microsoft Excel, where it was converted to decimal degrees and transferred to a geographic 

information system environment in the format of a database. The political boundaries and roads were digitized 

before producing a location map using ArcGIS software.  

 

4. Results and Discussion 
The result in Table 2 from landscape changes from Google Earth shows that in 1990 the built-up area was 5.5 

km
2
, indicating 4%, in 2015 it was 48.53 km

2
, showing 39%, and in 2020 the built-up area was 72.1 km

2
, implying 

57%. The result also reveals a low population in 1990 (Figure 2 and 5), a slightly higher population in 2015 (Figure 
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3 and 5) and a high population in 2020 (Figure 4 and 5), implying that as the region tends to develop and more and 

more industries continue to migrate and as more roads are built, we can see that the development of urban growth 

lends to the increase in population and also plays a negative role in water and soil pollution. 

 
Table-2. Analysis of Landuse changes from Google Earth Imagery 

S/N Goole Earth Imagery Area (km
2
) Percentage (%) 

1 1990 5.5 4 

2 2015 48.53 39 

3 2020 72.1 57 

 

 
Figure-2. Goole Earth image of 1990 

 

 
Figure-3. Goole Earth image of 2015 
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Figure-4. Goole Earth image of 2020 

 

 
Figure-5. Area of Landuse change from Google Earth imagery 

 

 
Figure-6. Percentage of landuse changes from Google Earth imagery 
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Table-3. Descriptive Statistics for heavy metals in soil 

Sample code Long Lat Fe Mn Cu Cd Cr Ni Zn Pb 

L1 6.37696 4.99907 97.72 23.04 7.87 4.98 8.97 2.62 10.98 5.10 

L2 6.37696 4.99917 100.71 33.04 9.87 5.98 9.97 3.62 11.98 6.10 

L3 6.357223 4.95617 983.29 39.33 14.25 6.76 17.19 6.22 20.87 11.10 

L4 6.357058 4.95493 932.54 39.32 14.17 9.02 15.81 6.51 20.52 10.73 

L5 6.267906 4.91809 1807.43 1.93 10.79 10.27 39.33 2.92 4.81 10.72 

L6 6.309784 4.93543 1686.35 2.12 11.01 10.31 44.18 2.90 5.12 22.87 

Control (C1)   6.40897 4.92897 55.53 1.34 2.05 4.03 0.14 1.02 3.55 3.01 
     Concentration is expressed in milligrams per kilograms (mg/kg) 

 

4.1. Contamination Factor (CF) and Pollution Load Index (PLI) 
The contamination and pollution load index were carried out to determine the level of contamination and 

pollution of the study area. These results are shown in Table 3. 

 

4.2. Contamination Factor 
The Contamination Factor (CF) of the heavy metals measured was calculated as Lacatusu [16]:   

   
       

            
 

 

Where Cm = the measured concentration of metal in the sample and Cb is the background concentration of the 

same metal in average shale or any other standard (for this study it is DPR standard). The interpretation of 

contamination index is based on the following intervals as proposed by Lacatusu [16] CF = 0 – 1.0 signifies 

contamination; 1.1- 4.0, slight moderate pollution; 4.1-8.0 Severe pollution; 8.1-16.0 Very severe pollution; >16.0 

Extreme pollution. 

 

4.3. Pollution Load Index  
The pollution load index, proposed by Tomlinson, et al. [17], indicates the contamination detection through the 

comparison of levels between sites. It is expressed as the concentration factor of each heavy metal, considering its 

background value:     √             
 

 

Where CF is the contamination factor; n, number of metals. The pollution load index can indicate either no 

pollution (PLI≤1), moderate pollution (1<PLI≤2), heavy pollution (2<PLI≤3), or extremely heavy pollution (3>PLI) 

[18]. 
 

 Table-4. Result of pollution load index and Contamination Factor heavy metals in soil 

 

 

 

 

 

 

 

 

 

The results obtained from Table 3 and 4 indicate that the pollution load index (PLI) indicates to L1 that the soil 

has heavy pollution, while L2, L3, L4, L5 and L6 indicate that the soil has extremely heavy pollution. The results of 

the contamination factor (CF) indicate that the soil contains from slight pollution to moderate to extreme pollution, 

which is as a result of industrial and solid waste. These chemicals are fatal to living organisms, and many vegetables 

and fruits are contaminated with these chemicals by Kamble [4] and Ebenstein [19]. Heavy rains and floods are 

linked to extreme weather conditions and create different diseases for developed countries and those in development 

[20]. 10% of the population depends on food and vegetables grown in contaminated water [21]. Many water-borne 

infectious diseases are linked to faecal pollution of water sources and lead to faecal-oral infection [15]. The health 

risk associated with polluted water includes different diseases such as respiratory diseases, cancer, diarrheal diseases, 

neurological disorders, and cardiovascular diseases [22]. The cancer death rate is higher in rural areas than in urban 

areas as city dwellers use treated water for drinking, while rural dwellers do not have access to treated water and use 

water. untreated [1]. 

The result from Figure 7a of historical Google Earth imagery along Tombia road in 1990 indicates that legal 

landfills 1 and 2 are not present, resulting in a low population; from Figure 7b in 2015, the legal landfill 1 is present 

along the road but the legal landfill 2 is not present, implying a gradual growth in the population; and from Figure 7c 

in 2020, the legal landfill 2 is present but the landfill Legal 1 is not present, implying a gradual increase in the 

population. 

Figures 8a and 9a, the result of historical Google Earth imagery in 1990 in the Etegwe and Akenfa markets, 

clearly show that illegal dumping is not present owing to the reduced population. However, Figures 8b, 8c, and 9b, 

9c in 2015 and 2020 identify that illegal dumping is present in the market place, which is predominantly polluted 

during the rainy season, when rain water flows into the Epic Creek, which serves as a source of drinking water. 

Sample 

Code 

 Contamination Factor PLI Mean CF 

Mn  Cu  Cd  Cr  Ni  Zn  Pb  Fe 

L1 1.93 17.20 3.84 1.23 2.57 2.57 3.09 1.76 2.95 4.28 

L2 1.99 24.66 4.82 1.48 3.55 3.55 3.38 1.81 3.58 5.66 

L3 19.46 29.35 6.95 1.68 6.10 6.10 5.88 17.71 8.44 11.65 

L4 18.46 29.35 6.91 2.24 6.38 6.38 5.78 16.79 8.71 11.54 

L5 35.77 1.44 5.26 2.55 2.86 2.86 1.36 32.55 4.73 10.58 

L6 33.37 1.58 5.37 2.56 2.84 2.84 1.44 30.37 4.74 10.05 
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Figure 10a shows that the illegal dump is not present because the area was underpopulated in 1990. However, in 

2015 and 2020, in Figure 10b and 10c, there is an illegal dump, implying the area is developed, resulting in the 

illegal dump being present in the market, polluting the area and causing runoff water to flow into the Ikoli river and 

pond, which serve as a source of water for domestic use, causing disease. 

 

 
Figure-7a. Google map of 1990 in Tombia road Showing legal Dumpsite 1 and 2 not present 

 

 
Figure-7b. Google map of 2015 in Tombia road showing legal dumpsite 1 present but not present in legal dumpsite 2 

 

 
Figure-7c. Google map of 2020 in Tombia road Showing legal dumpsite 2 present but not present in legal dumpsite 1 
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Figure-8a. Google map of 1990 in Etegwe market showing illegal Dumpsite 1 and 2 not present 

 

 
Figure-8b. Google map of 2015 in Etegwe market, showing illegal dumpsite 1 and 2 present 

 

 
Figure-8c. Google map of 2020 in Etegwe, market showing illegal dumpsite 1and 2 presents 
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Figure-9a. Google map of 1990 in Akenfa Market Showing illegal Dumpsite 3 not present 

 

 
Figure-9b. Google map of 2015 in Akenfa Market showing illegal dumpsite 3 present 

 

 
Figure-9c. Google map of 2020 in Akenfa Market, showing illegal dumpsite 3 present 
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Figure-10a. Google map of 1990 in Swail Market Showing illegal Dumpsite 4 not present 

 

 
Figure-10b. Google map of 2015 in Swail Market showing illegal dumpsite 4 present 

 

 
Figure-10c. Google map of 2020 in Swail Market, showing illegal dumpsite 4 present 
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5. Conclusion  
The landscape change assessment from Google Earth historical imagery and its environmental impact on 

landfills in Yenagoa, Bayelsa State, were studied using remote sensing and geographic information systems between 

1990 and 2015 and 2020. (GIS). The typical land use was assessed using remote sensing imagery combined with 

GIS. The result shows an increase in built-up area of 19% from 1990 to 2015, and bare land by 7% from 1990 to 

2015 and 8% from 2015 to 2020, as shown in Figures 8b, 8c, and 9b, 9c, 10b, and 10c from various historical 

Google images, implying population growth due to migration and industrial activities in the area. It has also been 

discovered that all illegal landfills are located along the market environment, which is too close to the Epie creek. 

Furthermore, the pollution load index and the contamination factor results indicate the presence of heavy metals in 

the area. As a result, it is suggested that urban growth be monitored in order to plan the location of various landfills 

in advance, and that an appropriate site survey for landfill site selection be available using GIS and remote sensing. 

A multicriteria analysis for the area must be created and followed. The study, which combined remote sensing and 

GIS, could be a useful approach to environmental planning and improvement. 
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