A short note on numbers of the form $k+F_{n}$, where $k \in\{2,4,8\}$ and F_{n} is a Fermat number

Ikorong Annouk*

Center Of Research In Pure Mathematics
Email: ikorong@ccr.jussieu.fr, gilbert.ikorong@sorbonne-universite.fr

Center Of Research In Pure Mathematics
Email: Paul.Archambault@precisely.com
Article History
Received: 7 May 2022
Revised: 13 July 2022
Accepted: 17 August 2022
Published: 24 August 2022

How to Cite

Ikorong, Annouk. Paul, Archambault. (2022). A Short Note on Numbers of the Form $k+F_{n}$, Where $k \in\{2,4,8\}$ and F_{n} is a Fermat Number. Sumerianz Journal of Scientific Research, vol. 5, pp. 60-62.

Abstract

A Fermat number is a number of the form $\boldsymbol{F}_{\boldsymbol{n}}=2^{2^{n}}+\mathbf{1}$, where n is an integer ≥ 0. A Fermat composite (see Dickson [1] or Hardy and Wright [2] or Ikorong [3]) is a non-prime Fermat number and a Fermat prime is a prime Fermat number. Fermat composites and Fermat primes are characterized via divisibility in Ikorong [3] and in Ikorong [4]. It is known (see Ikorong [3]) that for every $j \in\{0,1,2,3,4\}, F_{j}$ is a Fermat prime and it is also known (see Hardy and Wright [2] or Paul [5]) that F_{5} and F_{6} are Fermat composites $\left(F_{5}=2^{2^{5}}+1=641 \times 6700417\right.$, and since 2013, it is known that $F_{2747497}=2^{2^{2747497}}+1$ is Fermat composite number). In this paper, we show [via elementary arithmetic congruences] the following Result (E.). For every integer $n>0$ such that $n \equiv 1 \bmod$ [2], we have $F_{n}-1 \equiv 4$ \bmod [7]; and for every integer $n \geq 2$, we have $F_{n}-1 \equiv 1 \bmod [j]$, where $j \in\{3,5\}$. Result (E.) immediately implies that there are infinitely many composite numbers of the form $2+F_{n}$. Result (E.) also implies that the only prime of the form 4 $+F_{n}$ is 7 and the only primes of the form $8+F_{n}$ are twin primes 11 and 13. That being said, using result (E.) and a special case of a Theorem of Dirichlet on arithmetic progression, we conjecture that there are infinitely many primes of the form $2+F_{n}$.

Keywords: Fermat numbers; F_{n}.

1. Introduction

1.1. Theorem \mathbf{A}.

(E.). For every integer $n>0$ such that $n \equiv 1 \bmod [2]$, we have $F_{n}-1 \equiv 4$ mod [7]; and for every integer $n \geq 2$, we have $F_{n}-1 \equiv 1 \bmod [j]$, where $j \in\{3,5\}$.
(E.1). There are infinitely many composite numbers of the form $2+F_{n}$.
(E.2). The only prime of the form $4+F_{n}$ is 7 and the only primes of the form $8+F_{n}$ are twin primes 11 and 13 .

To prove Theorem A, we need the following remarks.

Remark 1.0.

> Let n be an integer >1 such that $n \equiv 1 \quad \bmod \quad[2] . \quad$ If $2^{2^{n-2}} \equiv 4$ mod \quad [7], then $2^{2^{n-2}} \times 2^{2^{n-2}} \times 2^{2^{n-2}} \times 2^{2^{n-2}} \equiv 4 \bmod [7]$.
(Proof. Immediate [indeed observe (via elementary arithmetic congruences) that $2^{2^{n-2}} \times 2^{2^{n-2}} \times 2^{2^{n-2}} \times 2^{2^{n-2}} \equiv 256 \bmod$ [7] (since $\left.2^{2^{n-2}} \equiv 4 \bmod [7]\right)$ and $\left.\left.256 \equiv 4 \bmod [7]\right] . \square\right)$

Proposition 1.1.

Let n be an integer >0 such that $n \equiv 1 \bmod [2] ;$ then $\mathbf{2}^{\mathbf{2}^{n}} \equiv 4 \bmod [7]$.
(Proof. Otherwise

$$
\begin{equation*}
\text { Let } n \text { be minimum such that } 2^{2^{n}} \not \equiv 4 \bmod [7](n \equiv 1 \bmod [2] \text { and } n>0) \tag{1.1}
\end{equation*}
$$

Clearly

$$
\begin{equation*}
\mathrm{n} \geq 3 \tag{1.2}
\end{equation*}
$$

(since $2^{2^{1}}=4$ and $4 \equiv 4 \bmod [7]$). It is immediate to see that

$$
\begin{equation*}
2^{2^{n}}=2^{2^{n}-2} \times 2^{2^{n-2}} \times 2^{2^{n}-2} \times 2^{2^{n}-2} \tag{1.3}
\end{equation*}
$$

Now using equality (1.3) and inequality (1.2), we easily deduce that (1.1) clearly implies that $2^{2^{n-2}} \times 2^{2^{n-2}} \times 2^{2^{n-2}} \times 2^{2^{n-2}} \not \equiv 4 \bmod [7] ; 2^{2^{n-2}} \equiv 4 \bmod [7](n \equiv 1 \bmod [2]$ and $\mathrm{n}>1)(1.4)$
(1.4) clearly contradicts Remark 1.0. \square).

Remark 1.2.

Let n be an integer ≥ 3. If $2^{2^{n-1}} \equiv 1 \bmod [j]$ where $j \in\{3,5\}$, then $2^{2^{n-1}} \times 2^{2^{n-1}} \equiv 1 \bmod [j]$.
(Proof. Immediate [via elementary arithmetic congruences]. \square)

Proposition 1.3.

Let n be an integer ≥ 2; then $2^{2^{n}} \equiv 1 \bmod [j]$, where $j \in\{3,5\}$.
(Proof. Otherwise

$$
\begin{equation*}
\text { Let } n \text { be minimum such that } 2^{2^{n}} \not \equiv 1 \bmod [j] \text { where } j \in\{3,5\} \tag{1.5}
\end{equation*}
$$

Clearly

$$
\begin{equation*}
\mathrm{n} \geq 3 \tag{1.6}
\end{equation*}
$$

(since $2^{2^{2}}=16$ and $16 \equiv 1 \bmod [j]$ where $j \in\{3,5\}$). It is immediate to see that

$$
\begin{equation*}
2^{2^{n}}=2^{2^{n}-1} \times 2^{2^{n-1}} \tag{1.7}
\end{equation*}
$$

Now using equality (1.7) and inequality (1.6), we easily deduce that (1.5) clearly implies that $2^{2^{n-1}} \times 2^{2^{n-1}} \not \equiv 1 \bmod [j]$, where $j \in\{3,5\}$ and where $2^{2^{n-1}} \equiv 1 \bmod [j] ; n \geq 3$ (1.8)
(1.8) clearly contradicts Remark 1.2. \square).

Proposition 1.4.

Let n be an integer ≥ 3 such that $n \equiv 1 \bmod [2]$. Then $2+F_{n} \equiv 0 \bmod [7]$ and $2+F_{n}$ is composite.
(Proof. Clearly

$$
\begin{equation*}
2+\left(2^{2^{n}}+1\right) \equiv 0 \bmod [7] \tag{1.9}
\end{equation*}
$$

[Observe that $2^{2^{n}} \equiv 4 \bmod [7]$ (use Proposition 1.1) and use elementary arithmetic congru-ences]. So $2+F_{n}$ $\equiv 0 \bmod [7]$ and $2+F_{n}$ is composite [use congruence (1.9) and observe that $2+\left(2^{2^{7}}+\mathbf{1}\right)=2+F_{n}$ and $2+F n>7$ (note that $\mathrm{n} \geq 3$)]. Proposition 1.4 immediately follows).

Proposition 1.5.

Let n be an integer ≥ 2. Then $4+F_{n} \equiv 0 \bmod [3]$ and $4+F_{n}$ is composite.
(Proof. Clearly

$$
\begin{equation*}
4+\left(2^{2^{n}}+\mathbf{1}\right) \equiv 0 \bmod [3] \tag{1.10}
\end{equation*}
$$

[Observe that $2^{2^{n}} \equiv 1 \bmod [3]$ (use Proposition 1.3) and use elementary arithmetic congru-ences]. So $4+F_{n}$ $\equiv 0 \bmod [3]$ and $4+F_{n}$ is composite [use congruence (1.10) and observe that $4+\left(2^{2^{n}}+\mathbf{1}\right)=4+F n$ and $4+F n>$ 3 (note that $n \geq 2$)]. Proposition 1.5 immediately follows).

Proposition 1.6.

Let n be an integer ≥ 2. Then $8+F_{n} \equiv 0 \bmod [5]$ and $8+F_{n}$ is composite.
(Proof. Clearly

$$
\begin{equation*}
8+\left(2^{2^{n}}+1\right) \equiv 0 \bmod [5] \tag{1.11}
\end{equation*}
$$

[Observe that $2^{2^{n}} \equiv 1 \bmod$ [5] (use Proposition 1.3) and use elementary arithmetic congru-ences]. So $8+F_{n} \equiv$ $0 \bmod [5]$ and $8+F_{n}$ is composite [use congruence (1.11) and observe that $8+\left(2^{2^{n}}+1\right)=8+F n$ and $8+F n>5$ (note that $n \geq 2$)]. Proposition 1.6 immediately follows).

Remark 1.7.

There are infinitely many composite numbers of the form $2+F_{n}$ or there are infinitely many prime numbers of the form $2+F_{n}$.
(Proof. Immediate).
Having made the previous Remarks and Propositions, then Theorem A becomes immediate to prove.

Proof of Theorem A.

(E.). Immediate [use Proposition 1.1 and Proposition 1.3 and observe that $2^{2^{n}}=F_{n}-1$].
(E.1). Immediate [use Proposition 1.4 and Remark 1.7].
(E.2). Clearly the only prime of the form $4+F_{n}$ is 7 [observe that $4+F_{0}=7$ and $4+F_{l}=9$ and use Proposition 1.5]; and clearly the only primes of the form $8+F_{n}$ are twin primes 11 and 13 [observe that $8+F_{0}=11$ and $8+F_{l}=13$ and use Proposition 1.6].

Now usig Result (E.) of Theorem A, then we end this paper by looking at numbers of the form $2+F_{n}$ which are prime [observe that for every $n \in\{0,1,2,4\}, 2+F_{n}$ is prime and $2+F_{3}$ is not prime].

Observation. It is natural to conjecture that there are infinitely many primes of the form $2+F_{n}$.
Indeed observing [via Result (E.) of Theorem A] that

$$
\begin{equation*}
F_{n}-1 \equiv 1 \bmod [3] \text { and } F_{n}-1 \equiv 1 \bmod [5] \text { for every integer } n \geq 2 \tag{1.12}
\end{equation*}
$$

clearly

$$
2+F_{n} \equiv 4 \bmod [5] \text { and } 2+F_{n} \equiv 1 \bmod [3] \text { for every integer } n \geq 2
$$

$2+F_{n} \equiv 4 \bmod [5]$ and $2+F_{n} \equiv 1 \mathrm{mo}$
[use (1.12) and elementary arithmetic congruences].
Now let $A_{4.5}=\{e ; e$ is prime and $e \equiv 4 \bmod [5]\}$ and let $A_{1.3}=\left\{e^{\prime} ; e^{\prime}\right.$ is prime and $\left.e^{\prime} \equiv 1 \bmod [3]\right\}$. Since it is immediate that

$$
\begin{equation*}
(4,5)=1 \text { and }(1,3)=1 \tag{1.14}
\end{equation*}
$$

Then using (1.14) coupled with a special case of a Theorem of Dirichlet on arithmetic progression [we recall that Theorem of Dirichlet on arithmetic progression states that For any two positive coprime integers a and d, there are infinitely many primes of the form $a+n d$, where n is a positive integer (In other words, there are infinitely many primes that are congruent to a modulo d)], it follows that

$$
\begin{equation*}
\text { card }\left(\mathrm{A}_{4.5}\right) \text { is infinite and card }\left(\mathrm{A}_{1.3}\right) \text { is infinite } \tag{1.15}
\end{equation*}
$$

Now using (1.13) and (1.15), then it becomes naturel to conjecture the following.
Conjecture. $A_{4.5}$ or $A_{1.3}$ contains infinitely many numbers of the form $2+F_{n}\left(A_{4.5}\right.$ and $A_{1.3}$ are defined via the Observation placed just above).

The previous conjecture immediately implies that there are infinitely many primes of the form $2+F_{n}$.

References

[1] Dickson, 1952. Theory of numbers (history of numbers. Divisibity and primality). Chelsea Publishing Company. New York, N.Y: Preface.III to Preface.XII.
[2] Hardy, G. H. and Wright, E. M. An introduction to the theory of numbers. 5th ed. Oxford: Clarendon Press.
[3] Ikorong, A., 2012. "Placed near the fermat primes and the fermat composite numbers." International Journal of Research In Mathematic and Apply Mathematical Sciences, vol. 3, pp. 72-82.
[4] Ikorong, A., 2014. "Then we characterize primes and composite numbers via divisibility." International Journal of Advanced In Pure Mathematical Sciences, vol. 2,
[5] Paul, H., 2000. "Erd"os, l'homme qui n'aimait que les nombres. Editions Belin." p. 3049.

