Sumerianz Journal of Scientific Research, 2022, Vol. 5, No. 3, pp. 60-62 ISSN(e): 2617-6955, ISSN(p): 2617-765X Website: <u>https://www.sumerianz.com</u> DOI: <u>https://doi.org/10.47752/sjsr.53.60.62</u> © Sumerianz Publication © Sumerianz Publication CC BY: Creative Commons Attribution License 4.0

Open Acces

Original Article

A short note on numbers of the form $k + F_n$, where $k \in \{2, 4, 8\}$ and F_n is a Fermat number

Ikorong Annouk[®]

Center Of Research In Pure Mathematics Email: <u>ikorong@ccr.jussieu.fr</u>, <u>gilbert.ikorong@sorbonne-universite.fr</u>

២ Paul Archambault

Center Of Research In Pure Mathematics Email: <u>Paul.Archambault@precisely.com</u>

Article History

Received: 7 May 2022

Revised: 13 July 2022

Accepted: 17 August 2022

Published: 24 August 2022

How to Cite

Ikorong, Annouk. Paul, Archambault. (2022). A Short Note on Numbers of the Form $k + F_n$, Where $k \in \{2, 4, 8\}$ and F_n is a Fermat Number. *Sumerianz Journal of Scientific Research*, vol. 5, pp. 60-62.

Abstract

A *Fermat number* is a number of the form $F_n = 2^{2^n} + 1$, where *n* is an integer ≥ 0 . A *Fermat composite* (see Dickson [1] or Hardy and Wright [2] or Ikorong [3]) is a non-prime Fermat number and a *Fermat prime* is a prime Fermat number. Fermat composites and Fermat primes are characterized via divisibility in Ikorong [3] and in Ikorong [4]. It is known (see Ikorong [3]) that for every $j \in \{0, 1, 2, 3, 4\}$, F_j is a Fermat prime and it is also known (see Hardy and Wright [2] or Paul [5]) that F_5 and F_6 are Fermat composites ($F_5 = 2^{2^5} + 1 = 641 \times 6700417$, and since 2013, it is known that $F_{2747497} = 2^{2^{2747497}} + 1$ is Fermat composite number). In this paper, we show [via elementary arithmetic congruences] the following Result (E.). For every integer n > 0 such that $n \equiv 1 \mod [2]$, we have $F_n - 1 \equiv 4 \mod [7]$; and for every integer $n \ge 2$, we have $F_n - 1 \equiv 1 \mod [j]$, where $j \in \{3, 5\}$. Result (E.) immediately implies that there are infinitely many composite numbers of the form $2 + F_n$. Result (E.) also implies that the only prime of the form $4 + F_n$ is 7 and the only primes of the form $8 + F_n$ are twin primes 11 and 13. That being said, using result (E.) and a special case of a Theorem of Dirichlet on arithmetic progression, we conjecture that there are infinitely many primes of the form $2 + F_n$.

Keywords: Fermat numbers; *F_n*.

1. Introduction

1.1. Theorem A.

(E.). For every integer n > 0 such that $n \equiv 1 \mod [2]$, we have $F_n - 1 \equiv 4 \mod [7]$; and for every integer $n \ge 2$, we have $F_n - 1 \equiv 1 \mod [j]$, where $j \in \{3, 5\}$.

(E.1). *There are infinitely many composite numbers of the form* $2+F_n$.

(E.2). The only prime of the form $4+F_n$ is 7 and the only primes of the form $8+F_n$ are twin primes 11 and 13. To prove Theorem A, we need the following remarks.

Remark 1.0.

Let n be an integer > 1 such that $n \equiv 1 \mod [2]$. If $2^{2^{n-2}} \equiv 4 \mod [7]$, then $2^{2^{n-2}} \times 2^{2^{n-2}} \times 2^{2^{n-2}} \times 2^{2^{n-2}} \equiv 4 \mod [7]$.

(Proof. Immediate [indeed observe (via elementary arithmetic congruences) that $2^{2^{n-2}} \times 2^{2^{n-2}} \times 2^{2^{n-2}} \times 2^{2^{n-2}} \equiv 256 \mod [7]$ (since $2^{2^{n-2}} \equiv 4 \mod [7]$) and $256 \equiv 4 \mod [7]$].

Proposition 1.1.

Let n be an integer > 0 such that $n \equiv 1 \mod [2]$; then $2^{2^n} \equiv 4 \mod [7]$.

Sumerianz Journal of Scientific Research

(Proof. Otherwise

Let n be minimum such that $2^{2^{n}} \neq 4 \mod [7] \ (n \equiv 1 \mod [2] \ and \ n > 0)$ (1.1) Clearly

(since $2^{2^{1}} = 4$ and $4 \equiv 4 \mod[7]$). It is immediate to see that $2^{2^{n}} = 2^{2^{n-2}} \times 2^{2^{n-2}} \times 2^{2^{n-2}} \times 2^{2^{n-2}}$ (1.3)

Now using equality (1.3) and inequality (1.2), we easily deduce that (1.1) clearly implies that $2^{2^{n-2}} \times 2^{2^{n-2}} \times 2^{2^{n-2}} \times 2^{2^{n-2}} \neq 4 \mod [7]; 2^{2^{n-2}} \equiv 4 \mod [7] \pmod{[2]} \pmod{[2]} \pmod{[2]}$

(1.4) clearly contradicts Remark 1.0. \Box).

Remark 1.2.

Let n be an integer ≥ 3 . If $2^{2^{n-1}} \equiv 1 \mod[j]$ where $j \in \{3, 5\}$, then $2^{2^{n-1}} \times 2^{2^{n-1}} \equiv 1 \mod[j]$. (**Proof.** Immediate [via elementary arithmetic congruences]. \Box)

Proposition 1.3.

Let n be an integer ≥ 2 ; then $2^{2^n} \equiv 1 \mod[j]$, where $j \in \{3, 5\}$.

(Proof. Otherwise

Let n be minimum such that $2^{2^n} \not\equiv 1 \mod[j]$ where $j \in \{3, 5\}$ (1.5) Clearly

$$n \ge 3 \tag{1.6}$$

(since $2^{2^2} = 16$ and $16 \equiv 1 \mod[j]$ where $j \in \{3, 5\}$). It is immediate to see that $2^{2^n} = 2^{2^{n-1}} \times 2^{2^{n-1}} \tag{1.7}$

Now using equality (1.7) and inequality (1.6), we easily deduce that (1.5) clearly implies that $2^{2^{n-1}} \times 2^{2^{n-1}} \neq 1 \mod[j], \text{ where } j \in \{3, 5\} \text{ and where } 2^{2^{n-1}} \equiv 1 \mod[j]; n \ge 3 (1.8)$

 $2^{-} \times 2^{-} \neq 1 \mod[j]$, where $j \in \{3, 5\}$ and where $2^{-} \equiv 1 \mod[j]$; $n \ge 3$ (1.8) (1.8) clearly contradicts Remark 1.2. \Box).

Proposition 1.4.

Let n be an integer ≥ 3 such that $n \equiv 1 \mod [2]$. Then $2 + F_n \equiv 0 \mod [7]$ and $2 + F_n$ is composite.

(Proof. Clearly

$$2 + (2^{2^{n}} + 1) \equiv 0 \mod [7] \tag{1.9}$$

[Observe that $2^{2^n} \equiv 4 \mod [7]$ (use Proposition 1.1) and use elementary arithmetic congru-ences]. So $2 + F_n \equiv 0 \mod [7]$ and $2 + F_n$ is composite [use congruence (1.9) and observe that $2 + (2^{2^n} + 1) = 2 + F_n$ and $2 + F_n > 7$ (note that $n \ge 3$)]. Proposition 1.4 immediately follows).

Proposition 1.5.

Let n be an integer
$$\geq 2$$
. Then $4 + F_n \equiv 0 \mod[3]$ and $4 + F_n$ is composite.
(**Proof.** Clearly

$$4 + (2^{2^n} + 1) \equiv 0 \mod [3] \tag{1.10}$$

[Observe that $2^{2^n} \equiv 1 \mod [3]$ (use Proposition 1.3) and use elementary arithmetic congruences]. So $4 + F_n \equiv 0 \mod [3]$ and $4 + F_n$ is composite [use congruence (1.10) and observe that $4 + (2^{2^n} + 1) = 4 + F_n$ and $4 + F_n > 3$ (note that $n \ge 2$)]. Proposition 1.5 immediately follows).

Proposition 1.6.

Let n be an integer ≥ 2 . Then $8 + F_n \equiv 0 \mod[5]$ and $8 + F_n$ is composite.

(Proof. Clearly

$$8 + (2^{2^{n}} + 1) \equiv 0 \mod [5] \tag{1.11}$$

[Observe that $2^{2^n} \equiv 1 \mod [5]$ (use Proposition 1.3) and use elementary arithmetic congru-ences]. So $8 + F_n \equiv 0 \mod [5]$ and $8 + F_n$ is composite [use congruence (1.11) and observe that $8 + (2^{2^n} + 1) = 8 + F_n$ and $8 + F_n > 5$ (note that $n \ge 2$)]. Proposition 1.6 immediately follows). \Box

Remark 1.7.

There are infinitely many composite numbers of the form $2 + F_n$ or there are infinitely many prime numbers of the form $2 + F_n$.

(Proof. Immediate).

Having made the previous Remarks and Propositions, then Theorem A becomes immediate to prove.

Proof of Theorem A.

(E.). Immediate [use Proposition 1.1 and Proposition 1.3 and observe that $2^{2^n} = F_n - 1$].

(E.1). Immediate [use Proposition 1.4 and Remark 1.7].

(E.2). Clearly the only prime of the form $4 + F_n$ is 7 [observe that $4 + F_0 = 7$ and $4 + F_1 = 9$ and use Proposition 1.5]; and clearly the only primes of the form $8 + F_n$ are twin primes 11 and 13 [observe that $8 + F_0 = 11$ and $8 + F_1 = 13$ and use Proposition 1.6].

Sumerianz Journal of Scientific Research

Now usig Result (E.) of Theorem A, then we end this paper by looking at numbers of the form $2+F_n$ which are prime [observe that for every $n \in \{0, 1, 2, 4\}, 2 + F_n$ is prime and $2 + F_3$ is not prime].

Observation. It is natural to conjecture that there are infinitely many primes of the form $2 + F_m$. Indeed observing [via Result (E.) of Theorem A] that

 $F_n-1 \equiv 1 \mod [3]$ and $F_n-1 \equiv 1 \mod [5]$ for every integer $n \ge 2$ (1.12),clearly

 $2 + F_n \equiv 4 \mod [5]$ and $2 + F_n \equiv 1 \mod [3]$ for every integer $n \ge 2$ (1.13)[use (1.12) and elementary arithmetic congruences].

Now let $A_{4,5} = \{e; e \text{ is prime and } e \equiv 4 \mod [5]\}$ and let $A_{1,3} = \{e'; e' \text{ is prime and } e' \equiv 1 \mod [3]\}$. Since it is immediate that

> (4, 5) = 1 and (1, 3) = 1(1.14)

> > (1.15)

Then using (1.14) coupled with a special case of a Theorem of Dirichlet on arithmetic progression [we recall that Theorem of Dirichlet on arithmetic progression states that For any two positive coprime integers a and d, there are infinitely many primes of the form a + nd, where n is a positive integer (In other words, there are infinitely many *primes that are congruent to a modulo d*)], it follows that

card $(A_{4.5})$ is infinite and card $(A_{1.3})$ is infinite

Now using (1.13) and (1.15), then it becomes naturel to conjecture the following.

Conjecture. A_{45} or A_{13} contains infinitely many numbers of the form $2+F_n$ (A_{45} and A_{13} are defined via the *Observation placed just above*).

The previous conjecture immediately implies that there are infinitely many primes of the form $2+F_{n}$.

References

- [1] Dickson, 1952. Theory of numbers (history of numbers. Divisibity and primality). Chelsea Publishing Company. New York, N.Y: Preface.III to Preface.XII.
- [2] Hardy, G. H. and Wright, E. M. An introduction to the theory of numbers. 5th ed. Oxford: Clarendon Press.
- [3] Ikorong, A., 2012. "Placed near the fermat primes and the fermat composite numbers." International Journal of Research In Mathematic and Apply Mathematical Sciences, vol. 3, pp. 72-82.
- [4] Ikorong, A., 2014. "Then we characterize primes and composite numbers via divisibility." International Journal of Advanced In Pure Mathematical Sciences, vol. 2.
- [5] Paul, H., 2000. "Erd"os, l'homme qui n'aimait que les nombres. Editions Belin." p. 3049.