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Abstract 

Regression analysis is an important tool in statistical analysis, in which there is a demand of discovering essential 

independent variables among many other ones, especially in case that there is a huge number of random variables. 

Extreme bound analysis is a powerful approach to extract such important variables called robust regressors. In this 

research, I propose a so-called Regressive Expectation Maximization with RObust regressors (REMRO) algorithm as an 

alternative method beside other probabilistic methods for analyzing robust variables.  By the different ideology from 

other probabilistic methods, REMRO searches for robust regressors forming optimal regression model and sorts them 

according to descending ordering given their fitness values determined by two proposed concepts of local correlation and 

global correlation. Local correlation represents sufficient explanatories to possible regressive models and global 

correlation reflects independence level and stand-alone capacity of regressors. Moreover, REMRO can resist incomplete 

data because it applies Regressive Expectation Maximization (REM) algorithm into filling missing values by estimated 

values based on ideology of expectation maximization (EM) algorithm. From experimental results, REMRO is more 

accurate for modeling numeric regressors than traditional probabilistic methods like Sala-I-Martin method but REMRO 

cannot be applied in case of nonnumeric regression model yet in this research. 

Keywords: Extreme bound analysis; Regression analysis; Correlation coefficient; Expectation maximization (EM) algorithm. 

 

1. Introduction 
Given an dependent random variable Z and a set of independent random variables X = (1, X1, X2,…, Xn)

T
, 

regression analysis aims to build up a regression function Z = α0 + α1X1 + α2X2 + … + αnXn called regression model 

from sample data (X, z) of size N. As a convention, Xj (s) are called regressors and Z is called responsor whereas α = 

(α0, α1, α2,…, αn)
T
 are called regressive coefficients. The sample (X, z) is in form of data matrix as follows: 
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Therefore, xij and zi is the i
th

 instances of regressor Xj and responsor Z at the i
th

 row of matrix (X, z). Because the 

sample (X, z) can be incomplete in this research, X and z can have missing values and so, let zi
–
 and xij

–
 denote 

missing values of responsor Z and regressor Xj at the i
th

 row of matrix (X, z). When both responsor and regressors are 

random variables, the assumption of their normal distribution is specified by the probability density function (PDF) 

of Z as follows: 

 ( |   )  
 

√    
   ( 

(     ) 

   
) (1.2) 

Note, α
T
X and σ

2
 are mean and variance of Z with regard to P(Z | X, α), respectively. The superscript “

T
” denotes 

transposition operator in vector and matrix. The popular technique to build up regression model is least squares 

method which produces the same result to likelihood method based on the PDF of Z but the likelihood method can 

produce more results with estimation of the variance σ
2
. The PDF P(Z | X, α) is essential to calculate likelihood 

function of given sample. Let  ̂  ( ̂   ̂   ̂     ̂ )
  be the estimates of regressive coefficients α = (α0, α1, α2,…, 

αn)
T
 resulted from least squares method or likelihood method, the estimate of responsor Z is easily calculated by 

regression function as follows: 

 ̂   ̂  ∑ ̂   

 

   

  ̂   (1.3) 

When there is a large number of random variables which consumes a lot of computing resources to produce 

regression model, there is a demand of discovering essential independent variables among many other ones. Extreme 

bound analysis (EBA) is a powerful approach to extract such important variables called robust regressors. 

Traditional EBA methods focus on taking advantages of probabilistic appropriateness of regressors. With concerning 

domain of EBA, let A, B, and C be free set, focus set, and doubtful set of regressors, respectively, the regression 

function k of regression model k is rewritten without loss of its meaning as follows: 

 ( )       
          

   (1.4) 

Where D is a combination of regressors taken from doubtful set C without regressor Xk and consequently, αA 

and αD are regressive coefficients extracted from α corresponding to free set A and combination set D, respectively. 

According to Levine, Renelt, and Leamer, suppose variance of each model k is σk
2
, if 95% confidence interval of αk 

as [αk – 1.96σk
2
, αk + 1.96σk

2
] [1] is larger or smaller than 0 then, the regressor Xk is robust. Alternately, Sala-I-

Martin estimated the mean  ̂  of αk weighted by K likelihood values over K models where K is the number of 

combinations taken from doubtful set C. Later on, Sala-I-Martin calculated every fitness value of every regressor Xk 

and such fitness value is represented by cumulative density function (cdf) at 0 denoted cdf(0) given mean  ̂  and 

model variance σk
2
. The larger the cdf(0) is, the more robust the regressor is. In general, these probabilistic methods 

are effective enough to apply into any data types of regressors and responsor although they may not evaluate exactly 

the regressors which are independent from any models because probabilistic analysis inside these methods is 

required concrete regression models which are already built. Therefore, in this research, I propose an alternative 

method based on correlation beside these probabilistic methods for analyzing robust variables, in which highly 

independent regressors are concerned more than ever. The proposed algorithm is described in the next section. 

 

2. Methodology  
In this section, I describe a proposed EBA method based on correlation coefficient for optimal regression model. 

Essentially, I propose two concepts of correlation such as local correlation and global correlation. Local correlation 

is also called model correlation, which implies fitness of a target regressive parameter with subject to a given 

regression model. Note, regressive parameter α = (α0, α1, α2,…, αn)
T
 is the set of regressive coefficients 

corresponding to regressors X = (X1, X2,…, Xn) and let Z and  ̂ be the responsor and its estimate, respectively. Given 

regression model k, let Rk(Xj,  ̂) and Rk( ̂, Z) be the correlation between Xj and  ̂ and the correlation between  ̂ and 

Z within model k, respectively. 
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Suppose the estimate of the j
th

 coefficient αj with regard to regressor Xj is  ̂ , let Rk(Xj, Z) be the local correlation 

of Xj and Z within model k. Obviously, Rk(Xj, Z) reflects fitness or appropriateness of the regressive coefficient 

estimate  ̂  regarding model k. The local correlation Rk(Xj, Z) is defined as product of Rk(Xj,  ̂) and Rk( ̂, Z) as 

follows: 

  (    )    (    ̂)  ( ̂  ) (2.2) 

Indeed, local correlation is a conditional correlation of a regressor along its estimated coefficient given the 

condition which is the estimated regression model and so, the intermediate variable representing such condition is 

the estimated response  ̂. For K models which are estimated, averaged local correlation  ̅(    ) is calculated as 

follows: 

 ̅(    )  
 

 
∑  (    )

 

   

 (2.3) 

Global correlation implies fitness of the target regressive parameter without concerning any regression models. 

Let R(Xj, Z) denote the global correlation between regressor Xj and responsor Z, which is defined as usual correlation 

coefficient as follows: 

 (    )  
∑ (     ̅ )(    ̅)
 
   

√∑ (     ̅ )
  

   √∑ (    ̅)
  

   

 
(2.4) 

A regressor Xj along with its implicit regressive coefficient αj are good if they can give sufficient explanatories 

to possible models and they can be more independent to reflect the responsor Z. In other words, the first condition of 

sufficient explanatories to possible models is represented by local correlation and the second condition of 

independent reflection is represented by global correlation. Therefore, the fitness of Xj and αj are defined as product 

of the averaged local correlation  ̅(    ) and the global correlation R(Xj, Z) follows: 

    ̅(    ) (    ) (2.5) 

The larger the fitness φj is, the better the implicit estimate  ̂  is, and the better the regressor Xj is. Good 

regressors Xj (also αj or  ̂ ) which have large enough fitness values φj are called robust regressors. Consequently, 

Regressive Expectation Maximization with RObust regressors (REMRO) algorithm searches for robust regressors 

and sorts them according to descending ordering with their fitness values φj as searching criterion. Another problem 

is how to produce K models to calculate the averaged local correlation  ̅ (    ). Fortunately, Sala-I-Martin [2] 

generated a set of K combinations of doubtful regressors which need to be checked their fitness. Each model in K 

models is estimated with each combination of doubtful ones and estimation method can be least squares method as 

usual. Moreover, REMRO can resist incomplete data because it applies Regressive Expectation Maximization 

(REM) algorithm into filling missing values for both regressors and responsor by estimated values based on ideology 

of expectation maximization (EM) algorithm. Let free set A be the set of regressors which is compulsorily included 

in the regression model and let focus set B = X\A be the complement of A with subject to the entire set X. Let d be the 

number of regressors in each combination set Dk taken from doubtful set C = B\{Xj} where Xj is current focused 

regressor, the following is flow chart of REMRO algorithm. 

 

 
Figure-2.1. Flow chart of REMRO 

 

Indeed, REMRO estimates fitness values of focused regressors in B and then builds up regression model with 

high fitness regressors. The final regression model estimated by REMRO with only robust regressors is called 

optimal regression model. Each combination suggested in some literature includes three doubtful regressors, d = 3. 
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Because the exhausted number of combinations will get huge as 2
|C|

–1 if d is browsed from 1 to the cardinality |C| of 

doubtful set, I suggest the size d of each combination is half the cardinality of doubtful set C and hence, the number 

of models is determined as follows: 

  ⌊
| |

 
⌋

  
| | 

(  ) 

 (2.6) 

Note, the notation ⌊ ⌋ represents lower integer of given real number. The accuracy of fitness computation is 

decreased when the number of target models is limited by such new d but this reduction will make REMRO faster 

and its decrease in accuracy will be alleviated by the global correlation R(Xj, Z) which does not concern any model. 

Sala-I-Martin [2] estimated the fitness of estimate  ̂  as the value of cumulative density function of αj at 0, 

denoted as cdf(αj =0 |  ̅     
 ) followed by calculating the mean  ̅  and the variance    

  of αj based on likelihood 

function over K models. 

      ( | ̅     
 ) (2.7) 

Especially, Sala-I-Martin mentioned the variance    
  as averaged variance of K models. When REMRO is 

tested with Sala-I-Martin method, I improve Sala-I-Martin formulation by estimating    
  only based on K distributed 

values of  ̂  because the averaged variance of K models does not reflect variation of regressors. For instance, give K 

models and suppose each estimate of αj within model k is  ̂ ( ), the variance    
  is calculated as follows: 
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Where Lk is likelihood function of model k with assumption that regressor instances are also mutually 

independent random variables, as follows: 
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Where Pk(zi | xi, αk) is the PDF of zi given model k: 
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The variance   
  of model k is estimated as follows: 
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Where  ̂ ( ) is the estimate of zi with model k. The mean  ̅  is still followed Sala-I-Martin formulation[2]. 
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 (2.9) 

According to formulation of    
  here, when  ̅  is a mean with likelihood distribution, the variance    

  is 

estimated with likelihood distribution too, which is slightly different from sample mean and sample variance as 

usual. In practice, Lk is replaced by logarithm of likelihood function lk = log(Lk) in order to prevent producing very 

small number due to large matrix data with many rows. 

REMRO applies REM algorithm into computing regressive estimates  ̂ = ( ̂ ,  ̂ ,  ̂ ,…,  ̂ )
T
 and REM, in 

turn, applies EM algorithm to resist missing values. It is necessary to describe shortly REM. REM [3] builds 

parallelly an entire regressive function and many partial inverse regressive functions so that missing values are 

estimated by both types of entire function and inverse functions. The model construction process of REM follows 

ideology of EM algorithm, especially EM loop but it is a bidirectional process. Recall that zi
–
 and xij

–
 denote missing 

values of responsor Z and regressor Xj at the i
th

 row of matrix (X, z), which are estimated by REM as follows [1, 3]: 
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 (2.10) 

Note, Ui is a set of indices of missing values xij with fixed i and βjk (s) are regressive coefficients of partial 

inverse regressive functions. Although the ideology of REM is interesting, the pivot of this research is the 

association of local correlation and global correlation for computing fitness values of regressors. The source code of 

REM and REMRO is available at. 

https://github.com/ngphloc/rem/tree/master/3_implementation/src/net/rem 
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3. Experimental Results and Discussions 
In this experiment, REMRO is tested with Sala-I-Martin [2] given absolute mean error (MAE) as testing metric. 

MAE is absolute deviation between original response Z in matrix data and estimated response  ̂ produced from 

regression model. 

    
 

 
∑|    ̂ |

 

   

 

The smaller the MAE is, the better the method is. The traditional data “1974 Motor Trend” (mtcars) available in 

R data package [4] measuring fuel consumption based on technical parameters is tested dataset, in which responsor 

is the vehicle’s miles per gallon (mpg) and 8 numeric regressors are number of cylinders (cyl), displacement in cubic 

inches (disp), gross horsepower (hp), rear axle ratio (drat), weight in thousands of pounds (wt), quarter-mile time in 

seconds (qsec), number of forward gears, and carburetors (carb). Only 4 robust regressors are extracted, which takes 

fifty percent of doubtful set. Table 3.1 shows the experimental results, in which second column lists sorted fitness 

values of robust regressors and third column shows optimal regression models whereas fourth column shows the 

evaluation metric MAE of REMRO method and Sala-I-Martin method. 

 
Table-3.1. Evaluation of REMRO and Sala-I-Martin 

Method Fitness Optimal model MAE 

REMRO fit(cyl) = 0.7262 

fit(disp) = 0.7200 

fit(hp) = 0.6435 

fit(wt) = 0.6133 

mpg = 40.8285 – 1.2933*(cyl) + 0.0116*(disp) 

– 0.0205*(hp) – 3.8539*(wt) 

1.771 

Sala-I-Martin fit(cyl) = 0.9913 

fit(disp) = 0.7055 

fit(hp) = 0.6908 

fit(qsec) = 0.6545 

mpg = 49.2352 – 1.6137*(cyl) – 0.0119*(disp) – 

0.0288*(hp) – 0.6827*(qsec) 

 

2.245 

 

According to table 3.1, the robust regressors of REMRO and Sala-I-Martin method are (cyl, disp, hp, wt) and 

(cyl, disp, hp, qsec) along with sorted fitness values (0.7262, 0.7200, 0.6435, 0.6133) and (0.9913, 0.7055, 0.6908, 

0.6545), respectively. Because MAE metric of REMRO as 1.771 is smaller than the one of Sala-I-Martin method as 

2.245, REMRO is better than Sala-I-Martin method. Moreover, REMRO and Sala-I-Martin method share the three 

same regressors such as cyl, disp, and hp but their last robust regressors are different and hence, such difference 

makes REMRO better than Sala-I-Martin method in this test. 

It is easy to deduce from experimental result, the strong point of REMRO is to appreciate the important level of 

strongly independent regressors from their global correlation when such regressors can explain well responsor 

without associating with other regressors. However, Sala-I-Martin method can work well in cases of binary data and 

multinomial data because the computing likelihoods for estimating fitness values does not depend directly on data 

types of regressors whereas arithmetic formulation of correlation coefficients requires strictly numerical regressors. 

Therefore, Sala-I-Martin method is more general than REMRO when it can be applied in many data types of 

regressors. Sala-I-Martin method can even be used for logit regression model because probabilistic applications are 

coherent aspects of such logistic model with note that likelihood function is essentially probability of random 

variable and prior/posterior functions are probabilities of parameter in Bayesian statistics. 

 

4. Conclusions 
From experimental results, REMRO is more accurate for modeling numeric regressors and responsor but it is 

not general and common like Sala-I-Martin method and other ones. In the future, I will try my best to improve 

REMRO by researching methods to approximate or replace numeric correlation by similar concepts within mixture 

of nonnumeric variables and numeric variables. 
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